KAM THEORY FOR PARTICLES IN PERIODIC POTENTIALS

被引:34
|
作者
LEVI, M [1 ]
机构
[1] BOSTON UNIV,DEPT MATH,BOSTON,MA 02215
关键词
D O I
10.1017/S0143385700005897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the system of the form x + V'(x) = p(t) with periodic V and p and with [p] = 0 is near-integrable for large energies. In particular, most (in the sense of Lebesgue measure) fast solutions are quasiperiodic, provided V epsilon-C(5) and p epsilon-L1; furthermore, for any solution x(t) there exists a velocity bound c for all time: \x(t) < c for all t epsilon-R. For any real number r there exists a solution with that average velocity, and when r is rational, this solution can be chosen to be periodic.
引用
收藏
页码:777 / 785
页数:9
相关论文
共 50 条
  • [1] QUASICLASSICAL THEORY OF QUANTUM PARTICLES IN 2 INCOMMENSURATE PERIODIC POTENTIALS
    SOKOLOFF, JB
    PHYSICAL REVIEW B, 1981, 23 (04): : 2039 - 2041
  • [2] SCATTERING-THEORY FOR 3 PARTICLES WITH PAIR POTENTIALS PERIODIC IN TIME
    KOROTIAEV, EL
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (04): : 836 - 839
  • [3] Quasi-periodic swing via weak KAM theory
    Niu, Xun
    Wang, Kaizhi
    Li, Yong
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 474
  • [4] Time-Periodic Evans Approach to Weak KAM Theory
    Sanchez Morgado, Hector
    MINIMAX THEORY AND ITS APPLICATIONS, 2018, 3 (02): : 313 - 322
  • [5] KAM THEORY FOR A NONLINEAR SCHRODINGER EQUATION WITH ALMOST-PERIODIC FORCING
    Rui, Jie
    Zhu, Sixue
    Zhang, Tingting
    Zhang, Min
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [6] Weak KAM theory for two classes of almost periodic Hamiltonian systems
    Niu, Xun
    Wang, Kaizhi
    Li, Yong
    SCIENCE CHINA-MATHEMATICS, 2025, : 1117 - 1136
  • [7] KAM THEORY FOR A NONLINEAR SCHROdDINGER EQUATION WITH ALMOST-PERIODIC FORCING
    Rui, Jie
    Zhu, Sixue
    Zhang, Tingting
    Zhang, Min
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (04): : 1182 - 1206
  • [8] RESONANT EQUILIBRIUM CONFIGURATIONS IN QUASI-PERIODIC MEDIA: KAM THEORY
    de la Llave, Rafael
    Su, Xifeng
    Zhang, Lei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (01) : 597 - 625
  • [9] Weak KAM theory for two classes of almost periodic Hamiltonian systems
    Xun Niu
    Kaizhi Wang
    Yong Li
    Science China(Mathematics), 2025, 68 (05) : 1117 - 1136
  • [10] PERIODIC AND QUASI-PERIODIC SOLUTIONS OF NONLINEAR-WAVE EQUATIONS VIA KAM THEORY
    WAYNE, CE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) : 479 - 528