The effect of treatment of the porcine intestinal brush-border membranes with malondialdehyde (MDA) on their lipid fluidity was examined using a fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). When the membranes were treated with MDA, the fluorescence anisotropy of DPH-labeled membranes increased and the amount of DPH molecules incorporated into the membranes decreased from 3.25 to 2.23 nmol/mg protein. In addition, the response of the fluorescence anisotropy of DPH-labeled membranes to benzyl alcohol, a well-known fluidizer, was markedly suppressed by treatment of the membranes with MDA. These results suggest that treatment of the membranes with MDA causes a decrease of the membrane lipid fluidity. This interpretation was further supported by the increase observed in the fluorescence anisotropy of DPH-labeled liposomes prepared from the extracted lipids of MDA-treated membranes. The results of SDS-polyacrylamide gel electrophoresis suggested that the formation of high-molecular-weight aggregates of the membrane proteins is not involved in the increase of the fluorescence anisotropy of DPH-labeled membranes by treatment with MDA. On the basis of these results, changes in the physical properties of the intestinal brush-border membranes by treatment with MDA are discussed.