CLASSICAL ORTHOGONAL POLYNOMIALS - A FUNCTIONAL-APPROACH

被引:100
|
作者
MARCELLAN, F
BRANQUINHO, A
PETRONILHO, J
机构
[1] UNIV CARLOS III,ESCUELA POLITECN SUPER,DEPT MATEMAT,E-28913 LEGANES MADRID,SPAIN
[2] UNIV COIMBRA,DEPT MATEMAT,P-3000 COIMBRA,PORTUGAL
关键词
ORTHOGONAL POLYNOMIALS; LINEAR FUNCTIONALS; DIFFERENTIAL EQUATIONS;
D O I
10.1007/BF00998681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the so-called classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) using the distributional differential equation D(phiu) = psiu. This result is naturally not new. However, other characterizations of classical orthogonal polynomials can be obtained more easily from this approach. Moreover, three new properties are obtained.
引用
收藏
页码:283 / 303
页数:21
相关论文
共 50 条
  • [41] On extreme zeros of classical orthogonal polynomials
    Krasikov, Ilia
    J. Comput. Appl. Math., 1 (168-182):
  • [42] An extremal property of classical orthogonal polynomials
    Stepanov, VD
    DOKLADY MATHEMATICS, 2005, 72 (01) : 555 - 557
  • [43] SIMPLE GENERALIZED CLASSICAL ORTHOGONAL POLYNOMIALS
    SCHAFKE, FW
    WOLF, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1973, 262 : 339 - 355
  • [44] POSITIVE SUMS OF CLASSICAL ORTHOGONAL POLYNOMIALS
    GASPER, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A109 - A109
  • [45] Results on the associated classical orthogonal polynomials
    Lewanowicz, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) : 215 - 231
  • [46] CONGRUENCE PROPERTIES OF THE CLASSICAL ORTHOGONAL POLYNOMIALS
    ALSALAM, WA
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1958, 25 (01) : 1 - 9
  • [47] Classical orthogonal polynomials: dependence of parameters
    Ronveaux, A
    Zarzo, A
    Area, I
    Godoy, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) : 95 - 112
  • [48] On extreme zeros of classical orthogonal polynomials
    Krasikov, Ilia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 168 - 182
  • [49] Perturbed zeros of classical orthogonal polynomials
    Campos, RG
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1999, 5 (01): : 143 - 153
  • [50] Point vortices and classical orthogonal polynomials
    Demina, Maria V.
    Kudryashov, Nikolai A.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (05): : 371 - 384