CONVERGENCE IN MEASURE OF INTEGRANDS

被引:0
|
作者
SMITH, WV [1 ]
机构
[1] TEXAS TECH UNIV,DEPT MATH,LUBBOCK,TX 79409
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:899 / 903
页数:5
相关论文
共 50 条
  • [21] CONVERGENCE IN MEASURE AND IN CATEGORY
    Wilczynski, Wladyslaw
    ANNALES MATHEMATICAE SILESIANAE, 2020, 34 (01) : 164 - 168
  • [22] A note on almost sure convergence and convergence in measure
    Kriz, P.
    Stepan, J.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2014, 55 (01): : 29 - 40
  • [23] Two-Scale Convergence of Integral Functionals with Convex, Periodic and Nonstandard Growth Integrands
    Joel Fotso Tachago
    Hubert Nnang
    Acta Applicandae Mathematicae, 2012, 121 : 175 - 196
  • [24] Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator
    Hess, C
    ANNALS OF STATISTICS, 1996, 24 (03): : 1298 - 1315
  • [25] Absolute Continuity of Monotone Measure and Convergence in Measure
    Li, Jun
    Mesiar, Radko
    Zhang, Qiang
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND METHODS, PT 1, 2010, 80 : 500 - +
  • [26] Structural characteristics of fuzzy measure and convergence in measure
    Song, Jin-Jie
    Zhou, Xin-Bo
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1232 - 1237
  • [27] Two-Scale Convergence of Integral Functionals with Convex, Periodic and Nonstandard Growth Integrands
    Tachago, Joel Fotso
    Nnang, Hubert
    ACTA APPLICANDAE MATHEMATICAE, 2012, 121 (01) : 175 - 196
  • [28] DOMINATED CONVERGENCE THEOREM FOR THE INTEGRAL AND THE CONDITIONAL-EXPECTATION OF UNBOUNDED RANDOM SETS AND OF INTEGRANDS
    HESS, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (03): : 139 - 142
  • [29] Boolean algebras: Convergence and measure
    Fric, R
    TOPOLOGY AND ITS APPLICATIONS, 2001, 111 (1-2) : 139 - 149
  • [30] REMARK ON CONVERGENCE SYSTEMS IN MEASURE
    JOO, I
    ACTA SCIENTIARUM MATHEMATICARUM, 1976, 38 (3-4): : 301 - 303