Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models

被引:7
|
作者
Jun, Sung Jae [1 ,2 ]
Pinkse, Joris [1 ,2 ]
Xu, Haiqing [3 ]
Yildiz, Nese [4 ]
机构
[1] Penn State Univ, CAPCP, 608 Kern Grad Bldg, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Econ, 608 Kern Grad Bldg, University Pk, PA 16802 USA
[3] Univ Texas Austin, Dept Econ, Austin, TX 78712 USA
[4] Univ Rochester, Dept Econ, 222 Harkness Hall, Rochester, NY 14627 USA
来源
ECONOMETRICS | 2016年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
nonparametric identification; discrete endogenous regressors; triangular models;
D O I
10.3390/econometrics4010007
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average structural function using two-step matching. We also consider decomposing the effect of the first treatment into direct and indirect effects, which are shown to be identified by the proposed methodology. We allow for both of the treatment variables to be non-binary and do not appeal to an identification-at-infinity argument.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A consistent moment equations for binary probit models with endogenous variables using instrumental variables
    de Grange, Louis
    Gonzalez, Felipe
    Marechal, Matthieu
    Troncoso, Rodrigo
    JOURNAL OF CHOICE MODELLING, 2024, 53
  • [42] High-dimensional linear models with many endogenous variables
    Belloni, Alexandre
    Hansen, Christian
    Newey, Whitney
    JOURNAL OF ECONOMETRICS, 2022, 228 (01) : 4 - 26
  • [43] Estimation of nonseparable models with censored dependent variables and endogenous regressors
    Taylor, Luke
    Otsu, Taisuke
    ECONOMETRIC REVIEWS, 2019, 38 (01) : 4 - 24
  • [44] Non parametric analysis of panel data models with endogenous variables
    Feve, Frederique
    Florens, Jean-Pierre
    JOURNAL OF ECONOMETRICS, 2014, 181 (02) : 151 - 164
  • [45] A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching
    Murtazashvili, Irina
    Wooldridge, Jeffrey M.
    JOURNAL OF ECONOMETRICS, 2016, 190 (02) : 252 - 266
  • [46] Hinging Hyperplane Models for Multiple Predicted Variables
    Ivanescu, Anca Maria
    Kranen, Philipp
    Seidl, Thomas
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2012, 2012, 7338 : 431 - 448
  • [47] DISTRIBUTIONS OF RANDOM VARIABLES INVOLVED IN DISCRETE CENSORED δ-SHOCK MODELS
    Chadjiconstantinidis, Stathis
    Eryilmaz, Serkan
    ADVANCES IN APPLIED PROBABILITY, 2023, 55 (04) : 1144 - 1170
  • [48] Fast Decoding in Sequence Models Using Discrete Latent Variables
    Kaiser, Lukasz
    Roy, Aurko
    Vaswani, Ashish
    Parmar, Niki
    Bengio, Samy
    Uszkoreit, Jakob
    Shazeer, Noam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [49] Smooth, identifiable supermodels of discrete DAG models with latent variables
    Evans, Robin J.
    Richardson, Thomas S.
    BERNOULLI, 2019, 25 (02) : 848 - 876
  • [50] MULTIVARIATE CORRELATION MODELS WITH MIXED DISCRETE AND CONTINUOUS-VARIABLES
    OLKIN, I
    TATE, RF
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 : 448 - &