ON CAYLEY LINE DIGRAPHS

被引:10
|
作者
BRUNAT, JM
ESPONA, M
FIOL, MA
SERRA, O
机构
[1] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA 2,E-08028 BARCELONA,SPAIN
[2] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA & TELEMAT,E-08080 BARCELONA,SPAIN
关键词
D O I
10.1016/0012-365X(94)00196-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a colouring Delta of a d-regular digraph G and a colouring Pi of the symmetric complete digraph on d vertices with loops, the uniformly induced colouring L(Pi)Delta of the line digraph LG is defined. It is shown that the group of colour-preserving automorphisms of (LG,L(Pi)Delta) is a subgroup of the group of colour-permuting automorphisms of (G, Delta). This result is then applied to prove that if (G,Delta) is a d-regular coloured digraph and (LG,L(Pi)Delta) is a Cayley digraph, then (G,Delta) is itself a Cayley digraph Cay (Omega,Delta) and Pi is a group of automorphisms of Omega. In particular, a characterization of those Kautz digraphs which are Cayley digraphs is given. If d=2, for every are-transitive digraph G, LG is a Cayley digraph when the number k of orbits by the action of the so-called Rankin group is at most 5. If k greater than or equal to 3 the are-transitive k-generalized cycles for which LG is a Cayley digraph are characterized.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [21] THE CONNECTIVITY OF HIERARCHICAL CAYLEY DIGRAPHS
    HAMIDOUNE, YO
    LLADO, AS
    SERRA, O
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 275 - 280
  • [22] A Note on Moore Cayley Digraphs
    Alexander L. Gavrilyuk
    Mitsugu Hirasaka
    Vladislav Kabanov
    Graphs and Combinatorics, 2021, 37 : 1509 - 1520
  • [23] Enumeration of Cayley graphs and digraphs
    Alspach, B
    Mishna, M
    DISCRETE MATHEMATICS, 2002, 256 (03) : 527 - 539
  • [24] Cayley digraphs and lexicographic product
    Peng X.
    Wang D.
    Frontiers of Mathematics in China, 2007, 2 (3) : 447 - 454
  • [25] ON A PURSUIT GAME ON CAYLEY DIGRAPHS
    HAMIDOUNE, YO
    EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (03) : 289 - 295
  • [26] Which Faber-Moore-Chen digraphs are Cayley digraphs?
    Zdimalova, Maria
    Stanekova, Lubica
    DISCRETE MATHEMATICS, 2010, 310 (17-18) : 2238 - 2240
  • [27] Study of Cayley Digraphs over Polygroups
    Sanjabi, Ali
    Jafarpour, Morteza
    Hoskova-Mayerova, Sarka
    Aghabozorgi, Hossien
    Vagaska, Alena
    MATHEMATICS, 2024, 12 (17)
  • [28] On Isomorphisms of Minimal Cayley Graphs and Digraphs
    Cai Heng Li
    Sanming Zhou
    Graphs and Combinatorics, 2001, 17 : 307 - 314
  • [29] Endomorphisms of Cayley digraphs of rectangular groups
    Arworn, Srichan
    Gyurov, Boyko
    Nupo, Nuttawoot
    Panma, Sayan
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (02): : 153 - 169
  • [30] Normality of 2-Cayley digraphs
    Arezoomand, Majid
    Taeri, Bijan
    DISCRETE MATHEMATICS, 2015, 338 (03) : 41 - 47