ON CAYLEY LINE DIGRAPHS

被引:10
|
作者
BRUNAT, JM
ESPONA, M
FIOL, MA
SERRA, O
机构
[1] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA 2,E-08028 BARCELONA,SPAIN
[2] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA & TELEMAT,E-08080 BARCELONA,SPAIN
关键词
D O I
10.1016/0012-365X(94)00196-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a colouring Delta of a d-regular digraph G and a colouring Pi of the symmetric complete digraph on d vertices with loops, the uniformly induced colouring L(Pi)Delta of the line digraph LG is defined. It is shown that the group of colour-preserving automorphisms of (LG,L(Pi)Delta) is a subgroup of the group of colour-permuting automorphisms of (G, Delta). This result is then applied to prove that if (G,Delta) is a d-regular coloured digraph and (LG,L(Pi)Delta) is a Cayley digraph, then (G,Delta) is itself a Cayley digraph Cay (Omega,Delta) and Pi is a group of automorphisms of Omega. In particular, a characterization of those Kautz digraphs which are Cayley digraphs is given. If d=2, for every are-transitive digraph G, LG is a Cayley digraph when the number k of orbits by the action of the so-called Rankin group is at most 5. If k greater than or equal to 3 the are-transitive k-generalized cycles for which LG is a Cayley digraph are characterized.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [1] Large Cayley digraphs and bipartite Cayley digraphs of odd diameters
    Abas, Marcel
    Vetrik, Tomas
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1162 - 1171
  • [2] THE CONJUNCTION OF CAYLEY DIGRAPHS
    KEATING, K
    DISCRETE MATHEMATICS, 1982, 42 (2-3) : 209 - 219
  • [3] On the primitivity of Cayley digraphs
    Schomburg, Bernd
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) : 356 - 360
  • [4] Cayley digraphs and graphs
    Delorme, Charles
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1307 - 1315
  • [5] Labelings in Cayley digraphs
    Thirusangu, K.
    Nagar, Atulya K.
    Rajeswari, R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (01) : 133 - 139
  • [6] On the path homology of Cayley digraphs and covering digraphs
    Di, Shaobo
    Ivanov, Sergei O.
    Mukoseev, Lev
    Zhang, Mengmeng
    JOURNAL OF ALGEBRA, 2024, 653 : 156 - 199
  • [7] On Hamiltonian Property of Cayley Digraphs
    Duan, Fang
    Huang, Qiong-xiang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (02): : 547 - 556
  • [8] A family of nonnormal Cayley digraphs
    Feng, YQ
    Wang, DJ
    Chen, JL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (01): : 147 - 152
  • [9] Automorphism groups of Cayley digraphs
    Feng, Yan-Quan
    Lu, Zai-Ping
    Xu, Ming-Yo
    APPLICATIONS OF GROUP THEORY TO COMBINATORICS, 2008, : 13 - +
  • [10] Divisible design Cayley digraphs
    Crnkovic, Dean
    Kharaghani, Hadi
    Svob, Andrea
    DISCRETE MATHEMATICS, 2020, 343 (04)