Posner's First Theorem for *-ideals in Prime Rings with Involution

被引:4
|
作者
Ashraf, Mohammad [1 ]
Siddeeque, Mohammad Aslam [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2016年 / 56卷 / 02期
关键词
Rings with involution; derivation; *-prime ring and *-ideal;
D O I
10.5666/KMJ.2016.56.2.343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Posner's first theorem states that if R is a prime ring of characteristic different from two, d(1) and d(2) are derivations on R such that the iterate d(1)d(2) is also a derivation of R, then at least one of d(1), d(2) is zero. In the present paper we extend this result to *-prime rings of characteristic different from two.
引用
收藏
页码:343 / 347
页数:5
相关论文
共 50 条
  • [31] A COMMUTATIVITY THEOREM FOR RINGS WITH INVOLUTION
    ALMOAJIL, AH
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1982, 7 (01): : 37 - 39
  • [32] COMMUTATIVITY THEOREM FOR RINGS WITH INVOLUTION
    CHACRON, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (06): : 1121 - 1143
  • [33] On weakly S-prime ideals of commutative rings
    Almahdi, Fuad Ali Ahmed
    Bouba, El Mehdi
    Tamekkante, Mohammed
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 173 - 186
  • [34] On S-2-Prime Ideals of Commutative Rings
    Yavuz, Sanem
    Ersoy, Bayram Ali
    Tekir, Unsal
    Celikel, Ece Yetkin
    MATHEMATICS, 2024, 12 (11)
  • [35] On S-weakly prime ideals of commutative rings
    Mahdou, Najib
    Moutui, Moutu Abdou Salam
    Zahir, Youssef
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 397 - 405
  • [36] PRIME IDEALS IN GENERAL RINGS
    MCCOY, NH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (07) : 632 - 632
  • [37] Prime ideals of σ(*)-rings and their extensions
    Bhat V.K.
    Lobachevskii Journal of Mathematics, 2011, 32 (1) : 103 - 107
  • [38] PRIME FUZZY IDEALS IN RINGS
    MUKHERJEE, TK
    SEN, MK
    FUZZY SETS AND SYSTEMS, 1989, 32 (03) : 337 - 341
  • [39] On strongly prime rings and ideals
    Kaucikas, A
    Wisbauer, R
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) : 5461 - 5473
  • [40] PRIME IDEALS IN ENVELOPING RINGS
    PASSMAN, DS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 302 (02) : 535 - 560