DOA IDENTIFIABILITY FOR ROTATIONALLY INVARIANT ARRAYS

被引:6
|
作者
SWINDLEHURST, A
机构
[1] Department of Electrical and Computer Engineering, Brigham Young University, Provo
关键词
D O I
10.1109/78.143455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This correspondence considers the problem of direction-of-arrival estimation using sensor arrays composed of two identical, uncalibrated, and rotated subarrays. It is shown that such arrays do not provide an identifiable parameterization of the problem; i.e., unlike ESPRIT, unique estimates are not possible when more than one signal is present.
引用
收藏
页码:1825 / 1828
页数:4
相关论文
共 50 条
  • [21] On rotationally invariant vector fields in the plane
    Berhanu, S
    Meziani, A
    MANUSCRIPTA MATHEMATICA, 1996, 89 (03) : 355 - 371
  • [22] On the Cheeger problem for rotationally invariant domains
    Bobkov, Vladimir
    Parini, Enea
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 503 - 522
  • [23] Precision rotationally invariant curve parameterization
    Alshina E.A.
    Ivanchenko E.S.
    Kalitkin N.N.
    Tishkin V.F.
    Mathematical Models and Computer Simulations, 2009, 1 (1) : 11 - 20
  • [24] On the Cheeger problem for rotationally invariant domains
    Vladimir Bobkov
    Enea Parini
    manuscripta mathematica, 2021, 166 : 503 - 522
  • [25] On the Fourier transform of rotationally invariant distributions
    Norbert Ortner
    Peter Wagner
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 469 - 484
  • [26] On the Weyl transform for rotationally invariant symbols
    Ortner, Norbert
    Wagner, Peter
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) : 769 - 791
  • [27] OSRI: A Rotationally Invariant Binary Descriptor
    Xu, Xianwei
    Tian, Lu
    Feng, Jianjiang
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 2983 - 2995
  • [28] Uniqueness of rotationally invariant polyhedra classification
    Schön, JC
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1999, 214 (01): : 1 - 4
  • [29] Rotationally invariant ensembles of integrable matrices
    Yuzbashyan, Emil A.
    Shastry, B. Sriram
    Scaramazza, Jasen A.
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [30] Uwdin population analysis is not rotationally invariant
    Mayer, I
    CHEMICAL PHYSICS LETTERS, 2004, 393 (1-3) : 209 - 212