A time- and memory-efficient frequent itemset discovering algorithm for association rule mining

被引:1
|
作者
Ivancsy, Renata [1 ,2 ]
Vajk, Istvan [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Automat & Appl, 3 Goldmann Gy Ter, H-1111 Budapest, Hungary
[2] HAS BUTE Control Res Grp, H-1111 Budapest, Hungary
关键词
association rule mining; frequent itemset; Apriori algorithm; FP-growth algorithm;
D O I
10.1504/IJCAT.2006.011998
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Frequent itemset discovering is a highly researched area in the field of data mining. The algorithms dealing with this problem have several advantages and disadvantages regarding their time complexity, I/O cost and memory requirement. There are algorithms that have moderate memory usage but high I/O cost, thus the execution time of them is high; such methods are for example the level-wise algorithms. Other methods have advantageous time behaviour; however, they are memory intensive, like the two-phase algorithms. In this paper, a novel algorithm, which is efficient both in time and memory, is proposed. The new algorithm discovers the small frequent itemsets quickly by taking advantage of the easy indexing opportunity of the suggested candidate storage structure. The main benefit of the novel algorithm is its advantageous time behaviour when using different types of datasets as well as its low I/O activity and moderate memory requirement.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 50 条
  • [31] Novel algorithm for frequent itemset mining in data warehouses
    Xu L.-J.
    Xie K.-L.
    Journal of Zhejiang University-SCIENCE A, 2006, 7 (2): : 216 - 224
  • [32] YAFIM: A Parallel Frequent Itemset Mining Algorithm with Spark
    Qiu, Hongjian
    Gu, Rong
    Yuan, Chunfeng
    Huang, Yihua
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 1664 - 1671
  • [33] Frequent Itemset Mining Algorithm based on Sampling Method
    Li, Haifeng
    Zhang, Ning
    Zhang, Yuejin
    PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 852 - 855
  • [34] A New Parallel Algorithm for the Frequent Itemset Mining Problem
    Craus, Mitica
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, 2008, : 165 - 170
  • [35] Association rule mining based fuzzy manta ray foraging optimization algorithm for frequent itemset generation from social media
    Lakshmi, N.
    Krishnamurthy, M.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (10):
  • [36] Frequent Itemset Mining Algorithm Based on Linear Table
    Lu, Jun
    Xu, Wenhe
    Zhou, Kailong
    Guo, Zhicong
    JOURNAL OF DATABASE MANAGEMENT, 2023, 34 (01)
  • [37] A novel algorithm for frequent itemset mining in data warehouses
    徐利军
    谢康林
    Journal of Zhejiang University Science A(Science in Engineering), 2006, (02) : 216 - 224
  • [38] A Distributed Frequent Itemset Mining Algorithm Based on Spark
    Gui, Feng
    Ma, Yunlong
    Zhang, Feng
    Liu, Min
    Li, Fei
    Shen, Weiming
    Bai, Hua
    PROCEEDINGS OF THE 2015 IEEE 19TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2015, : 271 - 275
  • [39] An Efficient Spark-Based Hybrid Frequent Itemset Mining Algorithm for Big Data
    Al-Bana, Mohamed Reda
    Farhan, Marwa Salah
    Othman, Nermin Abdelhakim
    DATA, 2022, 7 (01)
  • [40] BISC: A Bitmap Itemset Support Counting Approach for Efficient Frequent Itemset Mining
    Chen, Jinlin
    Xiao, Keli
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2010, 4 (03)