ON THE STOCHASTIC EUCLIDEAN TRAVELING SALESPERSON PROBLEM FOR DISTRIBUTIONS WITH UNBOUNDED SUPPORT

被引:3
|
作者
RHEE, WT
机构
关键词
STOCHASTIC MODEL; TRAVELING SALESMAN PROBLEM; BINOMIAL LAW; CONVERGENCE;
D O I
10.1287/moor.18.2.292
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the asymptotic behavior of the shortest tour T(n) through n points X1,...,X(n) in R(d) (d greater-than-or-less-than 2), where (X(i))i greater-than-or-equal-to 1 are i.i.d. random variables, whose density f(x) has an unbounded support. Beardwood et al. [2] conjectured that T(n)/n1-1/d converges a.s. if and only if integral f(x)1-1/d dx < infinity and integral f(x)\\x\\d/(d-1) dx < infinity. We disprove this conjecture, and we show that the second integrability condition is not strong enough. We give a stronger condition that is optimal (but not necessary).
引用
收藏
页码:292 / 299
页数:8
相关论文
共 50 条