A VANLEER FINITE VOLUME SCHEME FOR THE EULER EQUATIONS ON UNSTRUCTURED MESHES

被引:4
|
作者
CHEVRIER, P
GALLEY, H
机构
关键词
D O I
10.1051/m2an/1993270201831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The feasibility of the Finite Volume method using a Van Leer scheme on irregular meshes made of quadrilaterals or triangles is shown for the Euler 2D equations. The results are compared with those of a first order scheme.
引用
收藏
页码:183 / 201
页数:19
相关论文
共 50 条
  • [41] A novel boundary constrained reconstruction method for unstructured finite volume method of Euler equations
    Su, Hongxing
    Chen, Zedong
    Wei, Yanxin
    Chang, Siyuan
    Liu, Jun
    PHYSICS OF FLUIDS, 2024, 36 (12)
  • [42] Modified Finite Volume Nodal Scheme for Euler Equations with Gravity and Friction
    Franck, Emmanuel
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 285 - 292
  • [43] Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations
    Ollivier-Gooch, Carl
    Nejat, Amir
    Michalak, Krzysztof
    AIAA JOURNAL, 2009, 47 (09) : 2105 - 2120
  • [44] A convergent finite volume scheme for the stochastic barotropic compressible Euler equations
    Chaudhary, Abhishek
    Koley, Ujjwal
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3403 - 3437
  • [45] A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries
    Meng, Xucheng
    Gu, Yaguang
    Hu, Guanghui
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (01) : 315 - 342
  • [46] A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries
    Xucheng Meng
    Yaguang Gu
    Guanghui Hu
    Communications on Applied Mathematics and Computation, 2023, 5 : 315 - 342
  • [47] A dual-time central difference finite volume scheme for interface capturing on unstructured meshes
    Gough, H.
    Gaitonde, Ann L.
    Jones, D. P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (02) : 149 - 175
  • [48] A kinetic energy and entropy preserving (KEEP) finite volume scheme on unstructured meshes for compressible flows
    Kuya, Yuichi
    Okumura, Wataru
    Sawada, Keisuke
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [49] Essentially non-oscillatory schemes for the Euler equations on unstructured meshes
    Zamecnik, M
    Hernández, JA
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 1999, 213 (G1) : 1 - 12
  • [50] The composite finite volume method on unstructured meshes for the two-dimensional shallow water equations
    Wang, JW
    Liu, RX
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 37 (08) : 933 - 949