AN EFFICIENT MAPPING OF BOLTZMANN MACHINE COMPUTATIONS ONTO DISTRIBUTED-MEMORY MULTIPROCESSORS

被引:0
|
作者
OH, DH
NANG, JH
YOON, H
MAENG, SR
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT COMP SCI,YUSUNG KU,TAEJON 305701,SOUTH KOREA
[2] KOREA ADV INST SCI & TECHNOL,CTR ARTIFICIAL INTELLIGENCE RES,YUSUNG KU,TAEJON 305701,SOUTH KOREA
来源
MICROPROCESSING AND MICROPROGRAMMING | 1992年 / 33卷 / 04期
关键词
NEURAL NETWORK; BOLTZMANN MACHINE; PARALLEL CONVERGENCE ALGORITHM; PARALLEL LEARNING ALGORITHM; PARALLEL PROCESSING; DISTRIBUTED-MEMORY MULTIPROCESSOR; SPEED-UP ANALYSES;
D O I
10.1016/0165-6074(92)90024-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an efficient mapping scheme of Boltzmann Machine computations onto a distributed-memory multiprocessor, which exploits the synchronous spatial parallelism, is presented. In this scheme, the neurons in the Boltzmann Machine are partitioned into p disjoint sets, and each set is mapped on a processor of a p-processor system. A parallel convergence and learning algorithms of Boltzmann Machine, necessary communication pattern among the processors, and their time complexities when neurons are partitioned and mapped onto a distributed-memory multiprocessor are investigated. An expected p-processor speed-up of the parallelizing scheme over a single processor is also analyzed theoretically. It can be used as a basis in determining the most cost-effective or optimal number of processors with respect to the communication capabilities and interconnection topologies of given distributed-memory multiprocessor.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条
  • [31] Distributed-Memory Sparse Kernels for Machine Learning
    Bharadwaj, Vivek
    Buluc, Aydin
    Demmel, James
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 47 - 58
  • [32] An algorithmic framework for parallelizing vision computations on distributed-memory machines
    Chung, Y
    1997 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 1997, : 160 - 165
  • [33] STORE COHERENCY IN A PARALLEL DISTRIBUTED-MEMORY MACHINE
    BORRMANN, L
    ISTAVRINOS, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 487 : 32 - 41
  • [34] THE N-OMEGA - AN OMEGA-LIKE TOPOLOGY FOR DISTRIBUTED-MEMORY MULTIPROCESSORS
    GUPTA, M
    LEE, KY
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1990, 9 (04) : 398 - 410
  • [35] Parallel solution of sparse linear least squares problems on distributed-memory multiprocessors
    Sun, CG
    PARALLEL COMPUTING, 1997, 23 (13) : 2075 - 2093
  • [36] Dual Boundary Element Method for crack growth analysis on distributed-memory multiprocessors
    Gonzalez, P
    Pena, TF
    Cabaleiro, JC
    Rivera, FF
    ADVANCES IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 1998, : 65 - 71
  • [37] Evolution-Based Scheduling of Computations and Communications on Distributed-Memory Multicomputers
    Al-Mouhamed, Mayez
    Computer Journal, 42 (05): : 373 - 389
  • [38] Evolution-based scheduling of computations and communications on distributed-memory multicomputers
    Al-Mouhamed, M
    COMPUTER JOURNAL, 1999, 42 (05): : 373 - 390
  • [39] MAPPING AND COLORING SCHEMES FOR DISTRIBUTED-MEMORY PARALLEL PROCESSORS
    POMMERELL, C
    ANNARATONE, M
    FICHTNER, W
    AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1990, 44 (05): : 353 - 367
  • [40] DATA MANAGEMENT FOR A CLASS OF ITERATIVE COMPUTATIONS ON DISTRIBUTED-MEMORY MIMD SYSTEMS
    CORNEAHASEGAN, MC
    MARINESCU, DC
    ZHANG, ZY
    CONCURRENCY-PRACTICE AND EXPERIENCE, 1994, 6 (03): : 205 - 229