DIAGONAL SYMMETRIC LATIN SQUARES - PRELIMINARY REPORT

被引:0
|
作者
GROSS, KB
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A688 / &
相关论文
共 50 条
  • [21] Existence of t strongly symmetric pairwise orthogonal diagonal Latin squares for t is an element of {3, 4, 5}
    Abel, R. Julian R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 306 - 328
  • [22] Variations of diagonal cyclicity of Latin squares formed by permutation polynomials
    Bhatta, Vadiraja G. R.
    Shankar, B. R.
    Poojary, Prasanna
    Manasa, K. J.
    Mishra, Vishnu Narayan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 438 - 452
  • [23] Variations of diagonal cyclicity of Latin squares formed by permutation polynomials
    Bhatta, Vadiraja G.R.
    Shankar, B.R.
    Poojary, Prasanna
    Manasa, K.J.
    Mishra, Vishnu Narayan
    Italian Journal of Pure and Applied Mathematics, 2021, 46 : 438 - 452
  • [24] Totally symmetric latin squares with prescribed intersection numbers
    Fu, CM
    Huang, WC
    Shih, YH
    Yaon, YJ
    DISCRETE MATHEMATICS, 2004, 282 (1-3) : 123 - 136
  • [25] A method for constructing symmetric Hamiltonia double Latin squares
    Ollis, M. A.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 36 : 265 - 278
  • [26] NUMBER OF MUTUALLY ORTHOGONAL DOUBLE DIAGONAL LATIN SQUARES OF ORDER M
    HILTON, AJW
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1974, 36 (MAY): : 129 - 134
  • [27] On singular 3 x 3 semi-diagonal Latin squares
    Trenkler, Goetz
    Trenkler, Dietrich
    MATHEMATICAL GAZETTE, 2007, 91 (520): : 126 - 128
  • [28] Existence of self-orthogonal diagonal Latin squares with a missing subsquare
    Bennett, FE
    Du, BL
    Zhang, HT
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 69 - 86
  • [29] Constructing self-conjugate self-orthogonal diagonal latin squares
    Du Beiliang
    Acta Mathematicae Applicatae Sinica, 1998, 14 (3) : 324 - 327
  • [30] Existence of self-conjugate self-orthogonal diagonal Latin squares
    Bennett, FE
    Du, B
    Zhang, H
    JOURNAL OF COMBINATORIAL DESIGNS, 1998, 6 (01) : 51 - 62