A micromechanical approach to the mechanical characterization of 3D-printed composites

被引:0
|
作者
Sayyidmousavi, Alireza [1 ]
Fawaz, Zouheir [2 ]
机构
[1] Ryerson Univ, Dept Math, 350 Victoria St, Toronto, ON M5B 2K3, Canada
[2] Ryerson Univ, Dept Aerosp Engn, Toronto, ON, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
3D-printed composites; micromechanical modeling; material properties; material characterization; fused deposition modeling;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aiming for the development of experimentally validated computational models to predict the mechanical properties of 3D-printed composites, the present study proposes a micromechanical approach by using a simplified unit cell model to characterize the material properties and behavior of 3D-printed composites manufactured through fused deposition modeling. The effective properties of the voided polymer matrix phase of the material are computed by calculating the void density as a tensorial meso-structural variable. These effective properties along with those of the fiber are input into a simplified micromechanical model to predict the material properties of the 3D-printed composite. The predictions are seen to be in very good agreement with the experimental values. The present approach is much simpler and less computationally costly compared to the finite element homogenization method. In addition, the present approach has the potential to simulate the response of the 3D-printed composite under different loading conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] 3D-Printed Chitosan Composites for Biomedical Applications
    Murugan, Sesha Subramanian
    Anil, Sukumaran
    Sivakumar, Padmanaban
    Shim, Min Suk
    Venkatesan, Jayachandran
    CHITOSAN FOR BIOMATERIALS IV: BIOMEDICAL APPLICATIONS, 2021, 288 : 87 - 116
  • [32] Compressive Behaviour of 3D-Printed PETG Composites
    Valvez, Sara
    Silva, Abilio P.
    Reis, Paulo N. B.
    AEROSPACE, 2022, 9 (03)
  • [33] Fire Behavior of 3D-Printed Polymeric Composites
    Babu, Karthik
    Das, Oisik
    Shanmugam, Vigneshwaran
    Mensah, Rhoda Afriye
    Forsth, Michael
    Sas, Gabriel
    Restas, Agoston
    Berto, Filippo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (07) : 4745 - 4755
  • [34] Characterization of 3D-Printed IPMC Actuators
    Carrico, James D.
    Erickson, John M.
    Leang, Kam K.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2016, 2016, 9798
  • [35] Electromagnetic interference shielding of 3D-printed graphene-polyamide-6 composites with 3D-printed morphology
    Lee, Kok Peng Marcian
    Baum, Thomas
    Shanks, Robert
    Daver, Fugen
    ADDITIVE MANUFACTURING, 2021, 43
  • [36] Comprehensive characterization of 3D-printed bamboo/poly(lactic acid) bio composites
    Yilmaz, Sinan
    Gul, Okan
    Eyri, Busra
    Yilmaz, N. Gamze Karsli
    Yilmaz, Taner
    POLYMER ENGINEERING AND SCIENCE, 2023, 63 (09): : 2958 - 2972
  • [37] Modeling the pyrolysis of 3D-printed tannin-based composites - A first approach
    Blyweert, Pauline
    Nicolas, Vincent
    Fierro, Vanessa
    Celzard, Alain
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 202
  • [38] Mechanical properties of 3D-printed blood vessels
    Wang, Jiyan
    Krishnamoorthy, Srikumar
    Song, Hongtao
    Ma, Changhong
    DYNA, 2020, 95 (05): : 541 - 545
  • [39] Improving the Mechanical Properties of 3D-Printed Metal
    Kabaldin Y.G.
    Anosov M.S.
    Kolchin P.V.
    Shatagin D.A.
    Russian Engineering Research, 2023, 43 (08) : 976 - 979
  • [40] 3D-Printed PLA Molds for Natural Composites: Mechanical Properties of Green Wax-Based Composites
    Pop, Mihai Alin
    Cosnita, Mihaela
    Croitoru, Catalin
    Zaharia, Sebastian Marian
    Matei, Simona
    Spirchez, Cosmin
    POLYMERS, 2023, 15 (11)