ALMOST-ALL TREES SHARE A COMPLETE SET OF IMMANANTAL POLYNOMIALS

被引:17
|
作者
BOTTI, P
MERRIS, R
机构
[1] Department of Mathematics and Computer Science, California State University, Hayward, California
关键词
D O I
10.1002/jgt.3190170404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let chi be an irreducible character of the symmetric group S(n). For an n-by-n matrix A = (a(ij)), define [GRAPHICS] If G is a graph, let D(G) be the diagonal matrix of its vertex degrees and A(G) its adjacency matrix. Let y and z be independent indeterminates, and define L(G) = yD(G) + zA(G). Suppose t(n) is the number of trees on n vertices and s(n) is the number of such trees T for which there exists a nonisomorphic tree T such that d(chi)(xI - L(T)) = d(chi)(xI - L(T)) for every irreducible character chi of S(n). Then lim(n-->infinity)s(n)/t(n) = 1. (C) 1993 John Wiley & Sons, Inc.
引用
收藏
页码:467 / 476
页数:10
相关论文
共 50 条
  • [31] Maximizing spanning trees in almost complete graphs
    Gilbert, B
    Myrvold, W
    NETWORKS, 1997, 30 (01) : 23 - 30
  • [32] Maximizing spanning trees in almost complete graphs
    Gilbert, B
    Myrvold, W
    NETWORKS, 1997, 30 (02) : 97 - 104
  • [33] THE SIZE OF REDUCED OBDDS AND OPTIMAL READ-ONCE BRANCHING PROGRAMS FOR ALMOST-ALL BOOLEAN FUNCTIONS
    WEGENER, I
    IEEE TRANSACTIONS ON COMPUTERS, 1994, 43 (11) : 1262 - 1269
  • [34] Almost all trees have quantum symmetry
    Junk, Luca
    Schmidt, Simon
    Weber, Moritz
    ARCHIV DER MATHEMATIK, 2020, 115 (04) : 367 - 378
  • [35] Almost all trees have quantum symmetry
    Luca Junk
    Simon Schmidt
    Moritz Weber
    Archiv der Mathematik, 2020, 115 : 367 - 378
  • [36] Almost-all results on the <Emphasis Type=”Italic”>p</Emphasis><Superscript>&#955;</Superscript> problem
    Stephan Baier
    Acta Mathematica Hungarica, 2005, 106 (3) : 253 - 269
  • [37] Counting spanning trees in almost complete multipartite graphs
    Sujing Cheng
    Wuxian Chen
    Weigen Yan
    Journal of Algebraic Combinatorics, 2022, 56 : 773 - 783
  • [38] Counting spanning trees in almost complete multipartite graphs
    Cheng, Sujing
    Chen, Wuxian
    Yan, Weigen
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (03) : 773 - 783
  • [39] 'ALL SET ABOUT WITH FEVER TREES'
    DURBAN, P
    GEORGIA REVIEW, 1984, 38 (02): : 265 - 287
  • [40] Numbers with Almost all Convergents in a Cantor Set
    Roy, Damien
    Schleischitz, Johannes
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (04): : 869 - 875