A Theorem on Weighted Means in Non-Archimedean Fields

被引:0
|
作者
Natarajan, P. N.
机构
关键词
non-archimedean field; regular matrix; weighted means;
D O I
10.1134/S2070046610040096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
K denotes a complete, non-trivially valued, non-archimedean field. Infinite matrices, sequences and series have entries in K. In this paper, we prove an interesting result, which gives an equivalent formulation of summability by weighted mean methods. Incidentally this result includes the non-archimedean analogue of a theorem proved by Moricz and Rhoades (see [2], Theorem MR, p.188).
引用
收藏
页码:363 / 367
页数:5
相关论文
共 50 条
  • [21] DIFFERENTIATION IN NON-ARCHIMEDEAN VALUED FIELDS
    SCHIKHOF, WH
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1970, 73 (01): : 35 - &
  • [22] FREDHOLM ALTERNATIVE FOR NON-ARCHIMEDEAN FIELDS
    ELLIS, RL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1967, 42 (168P): : 701 - &
  • [23] Summary on non-Archimedean valued fields
    Comicheo, Angel Barria
    Shamseddine, Khodr
    ADVANCES IN ULTRAMETRIC ANALYSIS, 2018, 704 : 1 - 36
  • [24] A non-archimedean algebra and the Schwartz impossibility theorem
    Benci, Vieri
    Luperi Baglini, Lorenzo
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (04): : 503 - 520
  • [25] The strong rigidity theorem for non-Archimedean uniformization
    Ishida, MN
    Kato, F
    TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (04) : 537 - 555
  • [26] A Lefschetz hyperplane theorem for non-Archimedean Jacobians
    Shen, Tif
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 275 - 293
  • [27] A Lefschetz hyperplane theorem for non-Archimedean Jacobians
    Tif Shen
    Mathematische Zeitschrift, 2022, 302 : 275 - 293
  • [28] On non-Archimedean weighted spaces of continuous functions
    Katsaras, AK
    Beloyiannis, A
    P-ADIC FUNCTIONAL ANALYSIS, 1997, 192 : 237 - 252
  • [29] Tauberian Conditions under which Statistical Convergence Follows from Statistical Summability by Weighted Means in Non-Archimedean Fields
    Srinivasan, Vaithinathasamy
    Jemima, D. Eunice
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (01): : 169 - 174
  • [30] The implicit function theorem in a non-Archimedean setting
    Shamseddine, Khodr
    Rempel, Trevor
    Sierens, Todd
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (04): : 603 - 617