IMPROVING SPECTRAL-VARIATION BOUNDS WITH CHEBYSHEV POLYNOMIALS

被引:7
|
作者
PHILLIPS, D
机构
[1] Davis Hibbard Mayer Norton and Phillips, Inc., Middleton, WI 53562
关键词
D O I
10.1016/0024-3795(90)90247-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new spectral-variation bound is established for linear operators A and B on finite-dimensional vector spaces. This bound is v(A,B)≤c{norm of matrix}A-B{norm of matrix} 1 n({norm of matrix}A{norm of matrix} + {norm of matrix}B{norm of matrix}) (n-1) n with c<8. This result affirmatively answers a conjecture of Friedland. © 1990.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 50 条