IMPROVING SPECTRAL-VARIATION BOUNDS WITH CHEBYSHEV POLYNOMIALS

被引:7
|
作者
PHILLIPS, D
机构
[1] Davis Hibbard Mayer Norton and Phillips, Inc., Middleton, WI 53562
关键词
D O I
10.1016/0024-3795(90)90247-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new spectral-variation bound is established for linear operators A and B on finite-dimensional vector spaces. This bound is v(A,B)≤c{norm of matrix}A-B{norm of matrix} 1 n({norm of matrix}A{norm of matrix} + {norm of matrix}B{norm of matrix}) (n-1) n with c<8. This result affirmatively answers a conjecture of Friedland. © 1990.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 50 条
  • [1] Chebyshev polynomials and spectral methods
    Numerical Algorithms, 2005, 38 : 1 - 2
  • [2] Chebyshev polynomials and spectral methods - Preface
    不详
    NUMERICAL ALGORITHMS, 2005, 38 (1-3) : 1 - 2
  • [3] Spectral density reconstruction with Chebyshev polynomials
    Sobczyk, Joanna E.
    Roggero, Alessandro
    PHYSICAL REVIEW E, 2022, 105 (05)
  • [4] MTF spectral-variation analysis of CCD video cameras by speckle patterns
    Fernandez-Oliveras, Alicia
    Pozo Molina, Antonio Manuel
    Rubino Lopez, Manuel
    OPTICA PURA Y APLICADA, 2008, 41 (03): : 221 - 225
  • [5] THE COMPUTATION OF LINE SPECTRAL FREQUENCIES USING CHEBYSHEV POLYNOMIALS
    KABAL, P
    RAMACHANDRAN, RP
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (06): : 1419 - 1426
  • [6] Improving the precision of measurements through application of Chebyshev polynomials
    Savin, SK
    MEASUREMENT TECHNIQUES USSR, 1995, 38 (08): : 870 - 872
  • [8] RESOLVENT BOUNDS AND SPECTRAL VARIATION
    PHILLIPS, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 : 35 - 40
  • [9] Estimation of Coefficient Bounds for a Subclass of Analytic Functions using Chebyshev Polynomials
    Koride, Ganesh
    Rayaprolu, Bharavi Sharma
    Maroju, Hari Priya
    11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS, 2019, 2112
  • [10] SPECTRAL BOUNDS FOR MATRIX POLYNOMIALS WITH UNITARY COEFFICIENTS
    Cameron, Thomas R.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 585 - 591