Databases, features and classifiers for speech emotion recognition: a review

被引:178
|
作者
Swain, Monorama [1 ]
Routray, Aurobinda [2 ]
Kabisatpathy, P. [3 ]
机构
[1] Silicon Inst Technol, Dept Elect & Commun Engn, Bhubaneswar, Odisha, India
[2] Indian Inst Technol Kharagpur, Elect Engn, Kharagpur, W Bengal, India
[3] CV Raman Coll Engn, Dept Elect & Commun, Bhubaneswar, Odisha, India
关键词
Speech corpus; Excitation features; Spectral features; Prosodic features; Classifiers; Emotion recognition;
D O I
10.1007/s10772-018-9491-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Speech is an effective medium to express emotions and attitude through language. Finding the emotional content from a speech signal and identify the emotions from the speech utterances is an important task for the researchers. Speech emotion recognition has considered as an important research area over the last decade. Many researchers have been attracted due to the automated analysis of human affective behaviour. Therefore a number of systems, algorithms, and classifiers have been developed and outlined for the identification of emotional content of a speech from a person's speech. In this study, available literature on various databases, different features and classifiers have been taken in to consideration for speech emotion recognition from assorted languages.
引用
收藏
页码:93 / 120
页数:28
相关论文
共 50 条
  • [21] Novel acoustic features for speech emotion recognition
    ROH Yong-Wan
    KIM Dong-Ju
    LEE Woo-Seok
    HONG Kwang-Seok
    Science in China(Series E:Technological Sciences), 2009, (07) : 1838 - 1848
  • [22] Significance of Phonological Features in Speech Emotion Recognition
    Wei Wang
    Paul A. Watters
    Xinyi Cao
    Lingjie Shen
    Bo Li
    International Journal of Speech Technology, 2020, 23 : 633 - 642
  • [23] Exploiting the potentialities of features for speech emotion recognition
    Li, Dongdong
    Zhou, Yijun
    Wang, Zhe
    Gao, Daqi
    INFORMATION SCIENCES, 2021, 548 : 328 - 343
  • [24] Applying articulatory features to speech emotion recognition
    Zhou, Yu
    Sun, Yanqing
    Yang, Lin
    Yan, Yonghong
    2009 INTERNATIONAL CONFERENCE ON RESEARCH CHALLENGES IN COMPUTER SCIENCE, ICRCCS 2009, 2009, : 73 - 76
  • [25] Novel acoustic features for speech emotion recognition
    Yong-Wan Roh
    Dong-Ju Kim
    Woo-Seok Lee
    Kwang-Seok Hong
    Science in China Series E: Technological Sciences, 2009, 52 : 1838 - 1848
  • [26] Speech Emotion Recognition using Combination of Features
    Zhang, Qingli
    An, Ning
    Wang, Kunxia
    Ren, Fuji
    Li, Lian
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 523 - 528
  • [27] SPEECH EMOTION RECOGNITION WITH ACOUSTIC AND LEXICAL FEATURES
    Jin, Qin
    Li, Chengxin
    Chen, Shizhe
    Wu, Huimin
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4749 - 4753
  • [28] Speech emotion recognition: Features and classification models
    Chen, Lijiang
    Mao, Xia
    Xue, Yuli
    Cheng, Lee Lung
    DIGITAL SIGNAL PROCESSING, 2012, 22 (06) : 1154 - 1160
  • [29] Statistical Evaluation of Speech Features for Emotion Recognition
    Iliou, Theodoros
    Anagnostopoulos, Christos-Nikolaos
    ICDT: 2009 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL TELECOMMUNICATIONS, 2009, : 121 - 126
  • [30] Speech Emotion Recognition Based on Arabic Features
    Meddeb, Mohamed
    Karray, Hichem
    Alimi, Adel M.
    2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 46 - 51