EXTREMAL POLYGONS CIRCUMSCRIBED AN OVAL

被引:0
|
作者
CIESLAK, W
GOZDZ, S
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:63 / 68
页数:6
相关论文
共 50 条
  • [41] Extremal Area of Polygons, sliding along a circle
    Siersma, Dirk
    HOKKAIDO MATHEMATICAL JOURNAL, 2022, 51 (01) : 175 - 187
  • [42] Extremal Problems for Convex Polygons-An Update
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    LECTURES ON GLOBAL OPTIMIZATION, 2009, 55 : 1 - +
  • [43] Caustics of Poncelet Polygons and Classical Extremal Polynomials
    Vladimir Dragović
    Milena Radnović
    Regular and Chaotic Dynamics, 2019, 24 : 1 - 35
  • [44] Extremal convex polygons inscribed in a given convex polygon
    Kodmon, Csenge Lili
    Langi, Zsolt
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 102
  • [45] An algorithm to find maximum area polygons circumscribed about a convex polygon
    Ausserhofer, Markus
    Dann, Susanna
    Langi, Zsolt
    Toth, Geza
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 98 - 108
  • [46] An extension of the Poncelet theorem relative to polygons inscribed or circumscribed on conicals.
    Fontene, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1916, 162 : 213 - 217
  • [47] THE MEAN-VALUE OF THE AREA OF POLYGONS CIRCUMSCRIBED ABOUT A PLANE CONVEX BODY
    SANGWINEYAGER, JR
    ISRAEL JOURNAL OF MATHEMATICS, 1980, 37 (04) : 351 - 363
  • [48] Minimal circumscribed Hermitian ellipsoid of Hartogs domains and an application to an extremal problem
    An Wang
    Heung-ju Ahn
    Jong-do Park
    Science in China Series A: Mathematics, 2009, 52 : 1699 - 1716
  • [49] Minimal circumscribed Hermitian ellipsoid of Hartogs domains and an application to an extremal problem
    Wang An
    Heung-Ju, Ahn
    Jong-Do, Park
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08): : 1699 - 1716
  • [50] A simple proof of Pach's Extremal Theorem for convex polygons
    Toussaint, Godfried T.
    PATTERN RECOGNITION LETTERS, 1982, 1 (02) : 85 - 86