TRANSFORMATION OF SET PARTITIONING PROBLEM INTO A MAXIMUM WEIGHTED STABLE SET PROBLEM

被引:0
|
作者
BILLIONNET, A
机构
来源
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:319 / 323
页数:5
相关论文
共 50 条
  • [21] A combinatorial column generation algorithm for the maximum stable set problem
    Bourjolly, JM
    Laporte, G
    Mercure, H
    OPERATIONS RESEARCH LETTERS, 1997, 20 (01) : 21 - 29
  • [22] Combining decomposition approaches for the Maximum Weight Stable Set problem
    Brandstaedt, Andreas
    Mosca, Raffaele
    THEORETICAL COMPUTER SCIENCE, 2023, 960
  • [23] The 0-1 inverse maximum stable set problem
    Chung, Yerim
    Demange, Marc
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (13) : 2501 - 2516
  • [24] New algorithms for the problem of assigning minimum band frequency and the maximum stable set problem
    Avenali, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6A (02): : 215 - 218
  • [25] Hardware Minimization of Two-Level Adiabatic Logic Based on Weighted Maximum Stable Set Problem
    Ushioda, Yuya
    Kaneko, Mineo
    2022 IEEE 40TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2022), 2022, : 394 - 397
  • [26] Solving Robust Variants of the Maximum Weighted Independent Set Problem on Trees
    Klobucar, Ana
    Manger, Robert
    MATHEMATICS, 2020, 8 (02)
  • [27] Closed circle DNA algorithm of maximum weighted independent set problem
    Li, Qingyan
    Yin, Zhixiang
    Chen, Min
    Advances in Intelligent Systems and Computing, 2013, 212 : 113 - 121
  • [28] The set partitioning problem in a quantum context
    Cacao, Rafael
    Cortez, Lucas R. C. T.
    Forner, Jackson
    Validi, Hamidreza
    de Farias, Ismael R.
    Hicks, Illya V.
    OPTIMIZATION LETTERS, 2024, 18 (01) : 1 - 17
  • [29] The set partitioning problem in a quantum context
    Rafael Cacao
    Lucas R. C. T. Cortez
    Jackson Forner
    Hamidreza Validi
    Ismael R. de Farias
    Illya V. Hicks
    Optimization Letters, 2024, 18 : 1 - 17
  • [30] LINEAR ALGORITHMS FOR THE SET PARTITIONING PROBLEM, THE SET COVERING PROBLEM AND THE BIN PACKING PROBLEM IN THE HYPERGRAPH OF INTERVALS
    GONDRAN, M
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1979, 13 (01): : 13 - 21