Gonadotropin biological/immunological (B/I) ratios have proven to be valuable indicators of the biopotencies of LH and FSH. Observations of rapidly changing LH B/I have been made which suggest the existence of a readily mobilized pool of highly bioactive pituitary gonadotropins. To test this hypothesis, we have examined the role of GnRH in the regulation of LH B/I in vivo and in vitro. The rhesus monkey was used as a model due to its many physiological similarities with the human. A rapid elevation in circulating LH B/I was observed following GnRH administration to male monkeys that was sustained for at least 2 h (15 min; p < 0.05). The administration of 1 or 10 nM GnRH to cultured pituitary cells was found to significantly increase the B/I of secreted, but not intracellular, LH (p < 0.05). In unstimulated controls, the B/I intracellular LH was higher than that of secreted LH (p < 0.05). These findings are consistent with the notion that a pool of highly active LH exists within the gonadotrophs in primates. One way that GnRH may regulate the bioactivity of circulating LH is by rapidly mobilizing this gonadotropin pool.