ONE-DIMENSIONAL SCHR "ODINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS

被引:0
|
作者
Mikhailets, Vladimir [1 ]
Molyboga, Volodymyr [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, 3 Tereschenkivska, UA-01601 Kiev, Ukraine
来源
关键词
Hill equations; Schrodinger operators; singular potentials; spectrum gaps; periodic eigenvalues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the one-dimensional Schrodinger operators S(q) u := -u" + q( x) u, u is an element of Dom(S( q)), with 1-periodic real- valued singular potentials q( x) is an element of H-1 (per) (R, R) on the Hilbert space L-2 (R). We show equivalence of five basic definitions of the operators S(q) and prove that they are self- adjoint. A new proof of continuity of the spectrum of the operators S(q) is found. Endpoints of spectrum gaps are precisely described.
引用
收藏
页码:184 / 200
页数:17
相关论文
共 50 条
  • [31] Topological bands in one-dimensional periodic potentials
    Zheng, Yi
    Yang, Shi-Jie
    PHYSICA B-CONDENSED MATTER, 2014, 454 : 93 - 97
  • [32] SIMPLE RESULTS FOR ONE-DIMENSIONAL PERIODIC POTENTIALS
    PACHECO, M
    CLARO, F
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 114 (02): : 399 - 403
  • [33] Discrete and Embedded Eigenvalues for One-Dimensional Schrödinger Operators
    Christian Remling
    Communications in Mathematical Physics, 2007, 271 : 275 - 287
  • [34] The Absolutely Continuous Spectrum of One-dimensional Schrödinger Operators
    Christian Remling
    Mathematical Physics, Analysis and Geometry, 2007, 10 : 359 - 373
  • [35] Schrödinger transmission through one-dimensional complex potentials
    Ahmed, Z.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 427161 - 427164
  • [36] Quantitative observability for one-dimensional Schrödinger equations with potentials
    Su, Pei
    Sun, Chenmin
    Yuan, Xu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)
  • [37] Inverse scattering theory for one-dimensional Schrödinger operators with steplike finite-gap potentials
    Anne Boutet de Monvel
    Iryna Egorova
    Gerald Teschl
    Journal d'Analyse Mathématique, 2008, 106 : 271 - 316
  • [38] Dirichlet forms for singular one-dimensional operators and on graphs
    Ulrike Kant
    Tobias Klauss
    Jürgen Voigt
    Matthias Weber
    Journal of Evolution Equations, 2009, 9
  • [39] Dirichlet forms for singular one-dimensional operators and on graphs
    Kant, Ulrike
    Klauss, Tobias
    Voigt, Juergen
    Weber, Matthias
    JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (04) : 637 - 659
  • [40] ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH RANDOM POTENTIALS
    CARMONA, R
    PHYSICA A, 1984, 124 (1-3): : 181 - 187