COMPUTER METHOD FOR VERIFICATION OF ASYMPTOTICALLY STABLE PERIODIC ORBITS

被引:4
|
作者
FRANKE, JE
SELGRADE, JF
机构
关键词
D O I
10.1137/0510057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:614 / 628
页数:15
相关论文
共 50 条
  • [31] Computer analysis of periodic orbits of discontinuous vector fields
    Jacquemard, A
    Teixeira, MA
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (05) : 617 - 636
  • [32] Computer-assisted proof of skeletons of periodic orbits
    Barrio, Roberto
    Rodriguez, Marcos
    Blesa, Fernando
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) : 80 - 85
  • [33] A RIGOROUS STUDY OF PERIODIC-ORBITS BY MEANS OF A COMPUTER
    DEGREGORIO, S
    SCOPPOLA, E
    TIROZZI, B
    JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (01) : 25 - 33
  • [34] Existence of asymptotically stable periodic solutions of a Rayleigh type equation
    Wang, Yong
    Zhang, Liang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1728 - 1735
  • [36] Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation
    Alves, CO
    Carriao, PC
    Miyagaki, OH
    APPLIED MATHEMATICS LETTERS, 2003, 16 (05) : 639 - 642
  • [37] Stable Periodic Orbits for Delay Differential Equations with Unimodal Feedback
    Benedek, Gabor
    Krisztin, Tibor
    Szczelina, Robert
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [38] Periodic conductance fluctuations and stable orbits in mesoscopic semiconductor billiards
    Bird, JP
    Ferry, DK
    Akis, R
    Ochiai, Y
    Ishibashi, K
    Aoyagi, Y
    Sugano, T
    EUROPHYSICS LETTERS, 1996, 35 (07): : 529 - 534
  • [39] Stable periodic orbits for spacecraft around minor celestial bodies
    Yu Jiang
    Jürgen Arno Schmidt
    Hengnian Li
    Xiaodong Liu
    Yue Yang
    Astrodynamics, 2018, 2 (1) : 69 - 86
  • [40] CONVERSE LYAPUNOV FUNCTIONS FOR EXPONENTIALLY STABLE PERIODIC-ORBITS
    HAUSER, J
    CHUNG, CC
    SYSTEMS & CONTROL LETTERS, 1994, 23 (01) : 27 - 34