INTEGER POINTS IN ARITHMETIC SEQUENCES

被引:0
|
作者
Tucker, Thomas J. [1 ]
机构
[1] Univ Rochester, Dept Math, Hylan Bldg, Rochester, NY 14627 USA
关键词
Integral points; orbits; semiabelian varieties;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a dynamical analog of the Mordell-Lang conjecture for integral points. We are able to prove this conjecture in the case of endomorphisms of semiabelian varieties.
引用
收藏
页码:633 / 639
页数:7
相关论文
共 50 条
  • [31] Satisfiability Modulo Exponential Integer Arithmetic
    Frohn, Florian
    Giesl, Juergen
    AUTOMATED REASONING, IJCAR 2024, PT I, 2024, 14739 : 344 - 365
  • [32] An analysis of arithmetic constraints on integer intervals
    Apt, Krzysztof R.
    Zoeteweij, Peter
    CONSTRAINTS, 2007, 12 (04) : 429 - 468
  • [33] Toward Verifying Nonlinear Integer Arithmetic
    Beame, Paul
    Liew, Vincent
    JOURNAL OF THE ACM, 2019, 66 (03)
  • [34] ALGORITHMS FOR VERY LARGE INTEGER ARITHMETIC
    BRASSARD, G
    MONET, S
    ZUFFELLATO, D
    TSI-TECHNIQUE ET SCIENCE INFORMATIQUES, 1986, 5 (02): : 89 - 102
  • [35] INTEGER SETS CONTAINING NO ARITHMETIC PROGRESSIONS
    HEATHBROWN, DR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 35 : 385 - 394
  • [36] Scaling Integer Arithmetic in Probabilistic Programs
    Cao, William X.
    Garg, Poorva
    Tjoa, Ryan
    Holtzen, Steven
    Millstein, Todd
    Van den Broeck, Guy
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 260 - 270
  • [37] Monadic Decomposition in Integer Linear Arithmetic
    Hague, Matthew
    Lin, Anthony W.
    Rummer, Philipp
    Wu, Zhilin
    AUTOMATED REASONING, PT I, 2020, 12166 : 122 - 140
  • [38] On the arithmetic of power series with integer coefficients
    Schur, I
    MATHEMATISCHE ZEITSCHRIFT, 1922, 12 : 95 - 113
  • [39] On the expressiveness of real and integer arithmetic automata
    Boigelot, B
    Rassart, S
    Wolper, P
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1998, 1443 : 152 - 163
  • [40] Arithmetic of the integer quantum Hall effect
    Srivastava, V
    FOUNDATIONS OF PHYSICS LETTERS, 1998, 11 (06) : 561 - 571