TARSKI FIXPOINT LEMMA AND COMBINATORIAL GAMES

被引:2
|
作者
BANASCHEWSKI, B
PULTR, A
机构
[1] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON L8S 4K1,ONTARIO,CANADA
[2] CHARLES UNIV,DEPT APPL MATH,CS-11800 PRAGUE 1,CZECHOSLOVAKIA
关键词
COMBINATORIAL GAMES; TARSKI FIXPOINT LEMMA; PERSISTENT STRATEGIES; WINNING STRATEGIES; SUPERALGEBRAIC LATTICES;
D O I
10.1007/BF00383202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Tarski's Fixpoint Lemma for order preserving maps of a complete lattice into itself, a new, lattice theoretic proof is given for the existence of persistent strategies for combinatorial games as well as for games with a topological tolerance and games on lattices. Further, the existence of winning strategies is obtained for games on superalgebraic lattices, which includes the case of ordinary combinatorial games. Finally, a basic representation theorem is presented for those lattices.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [21] Games, Deception, and Jones' Lemma
    Fuchs, Zachariah E.
    Khargonekar, Pramod P.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4532 - 4537
  • [22] On a generalization of Kelly's combinatorial lemma
    Ben Amira, Aymen
    Dammak, Jamel
    Si Kaddour, Hamza
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (06) : 949 - 964
  • [23] A combinatorial proof of the Removal Lemma for Groups
    Kral, Daniel
    Serra, Oriol
    Vena, Lluis
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 971 - 978
  • [24] Another proof for a combinatorial lemma of Liao
    Zhang, Yong
    Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum uaturalium Universitatis Pekinensis, 2002, 38 (01):
  • [25] A CONSTRUCTIVE PROOF OF TUCKER COMBINATORIAL LEMMA
    FREUND, RM
    TODD, MJ
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 30 (03) : 321 - 325
  • [26] A Combinatorial Proof of a Generalized Folding Lemma
    Panprasitwech, Oranit
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [27] A MINIMAX VERSION OF PTAKS COMBINATORIAL LEMMA
    KINDLER, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 94 (02) : 454 - 459
  • [28] GAMES WITH COMBINATORIAL CONSTRAINTS
    Yemets, O. A.
    Ustian, N. Yu.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2008, 44 (04) : 575 - 581
  • [29] Indecomposable combinatorial games
    Fisher, Michael
    McKay, Neil A.
    Milley, Rebecca
    Nowakowski, Richard J.
    Santos, Carlos P.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 209
  • [30] Bidding combinatorial games
    Kant, Prem
    Larsson, Urban
    Rai, Ravi K.
    V. Upasany, Akshay
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):