TARSKI FIXPOINT LEMMA AND COMBINATORIAL GAMES

被引:2
|
作者
BANASCHEWSKI, B
PULTR, A
机构
[1] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON L8S 4K1,ONTARIO,CANADA
[2] CHARLES UNIV,DEPT APPL MATH,CS-11800 PRAGUE 1,CZECHOSLOVAKIA
关键词
COMBINATORIAL GAMES; TARSKI FIXPOINT LEMMA; PERSISTENT STRATEGIES; WINNING STRATEGIES; SUPERALGEBRAIC LATTICES;
D O I
10.1007/BF00383202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Tarski's Fixpoint Lemma for order preserving maps of a complete lattice into itself, a new, lattice theoretic proof is given for the existence of persistent strategies for combinatorial games as well as for games with a topological tolerance and games on lattices. Further, the existence of winning strategies is obtained for games on superalgebraic lattices, which includes the case of ordinary combinatorial games. Finally, a basic representation theorem is presented for those lattices.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [1] A note on the Knaster–Tarski Fixpoint Theorem
    Mengqiao Huang
    Yuxi Fu
    Algebra universalis, 2020, 81
  • [2] A note on the Knaster-Tarski Fixpoint Theorem
    Huang, Mengqiao
    Fu, Yuxi
    ALGEBRA UNIVERSALIS, 2020, 81 (04)
  • [3] Fixpoint Games on Continuous Lattices
    Baldan, Paolo
    Koenig, Barbara
    Mika-Michalski, Christina
    Padoan, Tommaso
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (POPL):
  • [4] COMBINATORIAL LEMMA
    GANTER, B
    TEIRLINCK, L
    MATHEMATISCHE ZEITSCHRIFT, 1977, 154 (02) : 153 - 156
  • [5] Games for Topological Fixpoint Logic
    Bezhanishvili, Nick
    Kupke, Clemens
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (226): : 46 - 60
  • [6] Tarski's Undefinability Theorem and the Diagonal Lemma
    Salehi, Saeed
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (03) : 489 - 498
  • [7] On one combinatorial lemma
    Yu. A. Shashkin
    Proceedings of the Steklov Institute of Mathematics, 2011, 272 : 186 - 196
  • [8] On one combinatorial lemma
    Shashkin, Yu. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (01): : 244 - 254
  • [9] On one combinatorial lemma
    Shashkin, Yu. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 : 186 - 196
  • [10] PTAKS COMBINATORIAL LEMMA
    SIMONS, S
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (03) : 719 - &