The Generalized Matrix Sector Function and the Separation of Matrix Eigenvalues

被引:1
|
作者
Shieh, Leang S. [1 ]
Tsai, Jason S. H. [1 ]
Yates, Robert E. [2 ]
机构
[1] Univ Houston, Dept Elect Engn, Houston, TX 77004 USA
[2] USA, Guidance & Control Directorate, Missile Command, Redstone, AL 35809 USA
关键词
D O I
10.1093/imamci/2.3.251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The matrix sector function of A is introduced and generalized to the matrix sector function of g(A), where the complex matrix A may have a real or complex characteristics polynomial and g(A) is a matrix function of a conformal mapping. The generalized matrix sector function of A is employed to separate the matrix eigenvalues relative to a sector, a circle, and a sector of a circle in the complex plane without actually seeking the characteristics polynomial and the matrix eigenvalues themselves. Also, the generalized matrix sector function of A is utilized to carry out the block-diagonalization and block-triangularization of a system matrix, which are useful in developing applications to mathematical science and control-system problems.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [31] ON BOUNDS FOR MATRIX EIGENVALUES
    NEWMAN, DJ
    HOUSEHOL.AS
    MARCUS, MD
    VANLINT, JH
    SIAM REVIEW, 1965, 7 (01) : 138 - &
  • [32] RANK AND EIGENVALUES OF A MATRIX
    FOSCHINI, GS
    ARTHUR, C
    ROUSSEAU, C
    EISMAN, SH
    APPELGAT.H
    SIAM REVIEW, 1969, 11 (04) : 628 - &
  • [33] Eigenvalues of a Tridiagonal Matrix
    Holland, Finbarr
    Laffey, Thomas
    Smyth, Roger
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (09): : 856 - 856
  • [34] On bounds of matrix eigenvalues
    Chen, Jinhai
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (04): : 723 - 726
  • [35] On the eigenvalues of Aα-matrix of graphs
    Liu, Shuting
    Das, Kinkar Chandra
    Shu, Jinlong
    DISCRETE MATHEMATICS, 2020, 343 (08)
  • [36] Further results on invariance of the eigenvalues of matrix products involving generalized inverses
    Tadeusz Kotarbinski Pedagogical U., Zielona Góra, Poland
    不详
    Linear Algebra Its Appl, (115-121):
  • [37] A neurodynamic approach to compute the generalized eigenvalues of symmetric positive matrix pair
    Feng, Jiqiang
    Yan, Su
    Qin, Sitian
    Han, Wen
    NEUROCOMPUTING, 2019, 359 : 420 - 426
  • [38] Further results on invariance of the eigenvalues of matrix products involving generalized inverses
    Baksalary, JK
    Markiewicz, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 237 : 115 - 121
  • [39] The generalized pascal matrix via the generalized fibonacci matrix and the generalized pell matrix
    Lee, Gwang-Yeon
    Cho, Seong-Hoon
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 479 - 491
  • [40] VON NEUMANN MODEL SOLUTIONS ARE GENERALIZED EIGENVALUES OF MATRIX GAME KERNELS
    THOMPSON, GL
    WEIL, RL
    ECONOMETRICA, 1971, 39 (04) : 139 - &