Incremental Learning for Classification of Unstructured Data Using Extreme Learning Machine

被引:12
|
作者
Madhusudhanan, Sathya [1 ]
Jaganathan, Suresh [1 ]
Jayashree, L. S. [2 ]
机构
[1] SSN Coll Engn, Dept Comp Sci & Engn, Madras 603110, Tamil Nadu, India
[2] PSG Coll Technol, Dept Comp Sci & Engn, Coimbatore 641004, Tamil Nadu, India
关键词
classification; unstructured data; extreme learning machine; incremental learning; streaming data;
D O I
10.3390/a11100158
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unstructured data are irregular information with no predefined data model. Streaming data which constantly arrives over time is unstructured, and classifying these data is a tedious task as they lack class labels and get accumulated over time. As the data keeps growing, it becomes difficult to train and create a model from scratch each time. Incremental learning, a self-adaptive algorithm uses the previously learned model information, then learns and accommodates new information from the newly arrived data providing a new model, which avoids the retraining. The incrementally learned knowledge helps to classify the unstructured data. In this paper, we propose a framework CUIL (Classification of Unstructured data using Incremental Learning) which clusters the metadata, assigns a label for each cluster and then creates a model using Extreme Learning Machine (ELM), a feed-forward neural network, incrementally for each batch of data arrived. The proposed framework trains the batches separately, reducing the memory resources, training time significantly and is tested with metadata created for the standard image datasets like MNIST, STL-10, CIFAR-10, Caltech101, and Caltech256. Based on the tabulated results, our proposed work proves to show greater accuracy and efficiency.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Parallelized extreme learning machine for online data classification
    Vidhya M
    Aji S
    Applied Intelligence, 2022, 52 : 14164 - 14177
  • [22] Extreme learning machine for classification over uncertain data
    Sun, Yongjiao
    Yuan, Ye
    Wang, Guoren
    NEUROCOMPUTING, 2014, 128 : 500 - 506
  • [23] Spectra data classification with kernel extreme learning machine
    Zheng, Wenbin
    Shu, Hongping
    Tang, Hong
    Zhang, Haiqing
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 192
  • [24] Multiclass Classification of Cancer Based on Microarray Data Using Extreme Learning Machine
    Khadijah
    Rismiyati
    Mantau, Aprinaldi Jasa
    2017 1ST INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS), 2017, : 159 - 164
  • [25] An incremental extreme learning machine for online sequential learning problems
    Guo, Lu
    Hao, Jing-hua
    Liu, Min
    NEUROCOMPUTING, 2014, 128 : 50 - 58
  • [26] Incremental laplacian regularization extreme learning machine for online learning
    Yang, Lixia
    Yang, Shuyuan
    Li, Sujing
    Liu, Zhi
    Jiao, Licheng
    APPLIED SOFT COMPUTING, 2017, 59 : 546 - 555
  • [27] Cancer Classification using improved Extreme Learning Machine
    Shreya, Ankita
    Vipsita, Swati
    Baliarsingh, Santos Kumar
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 203 - 210
  • [28] Classification of Hippocampal Region using Extreme Learning Machine
    Zaini, Muhammad Hafiz Md
    Shapiai, Mohd Ibrahim
    Mohamed, Ahmad Rithauddin
    Mokhtar, Norrima
    Ibrahim, Zuwairie
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P735 - P742
  • [29] Protein sequence classification using extreme learning machine
    Wang, DH
    Huang, GB
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1406 - 1411
  • [30] Classification of JPEG Files by Using Extreme Learning Machine
    Ali, Rabei Raad
    Mohamad, Kamaruddin Malik
    Jamel, Sapiee
    Khalid, Shamsul Kamal Ahmad
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2018), 2018, 700 : 33 - 42