Incremental Learning for Classification of Unstructured Data Using Extreme Learning Machine

被引:12
|
作者
Madhusudhanan, Sathya [1 ]
Jaganathan, Suresh [1 ]
Jayashree, L. S. [2 ]
机构
[1] SSN Coll Engn, Dept Comp Sci & Engn, Madras 603110, Tamil Nadu, India
[2] PSG Coll Technol, Dept Comp Sci & Engn, Coimbatore 641004, Tamil Nadu, India
关键词
classification; unstructured data; extreme learning machine; incremental learning; streaming data;
D O I
10.3390/a11100158
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unstructured data are irregular information with no predefined data model. Streaming data which constantly arrives over time is unstructured, and classifying these data is a tedious task as they lack class labels and get accumulated over time. As the data keeps growing, it becomes difficult to train and create a model from scratch each time. Incremental learning, a self-adaptive algorithm uses the previously learned model information, then learns and accommodates new information from the newly arrived data providing a new model, which avoids the retraining. The incrementally learned knowledge helps to classify the unstructured data. In this paper, we propose a framework CUIL (Classification of Unstructured data using Incremental Learning) which clusters the metadata, assigns a label for each cluster and then creates a model using Extreme Learning Machine (ELM), a feed-forward neural network, incrementally for each batch of data arrived. The proposed framework trains the batches separately, reducing the memory resources, training time significantly and is tested with metadata created for the standard image datasets like MNIST, STL-10, CIFAR-10, Caltech101, and Caltech256. Based on the tabulated results, our proposed work proves to show greater accuracy and efficiency.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A fast incremental extreme learning machine algorithm for data streams classification
    Xu, Shuliang
    Wang, Junhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 65 : 332 - 344
  • [2] Orthogonal incremental extreme learning machine for regression and multiclass classification
    Li Ying
    Neural Computing and Applications, 2016, 27 : 111 - 120
  • [3] Incremental semi-supervised Extreme Learning Machine for Mixed data stream classification
    Li, Qiude
    Xiong, Qingyu
    Ji, Shengfen
    Yu, Yang
    Wu, Chao
    Gao, Min
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [4] Orthogonal incremental extreme learning machine for regression and multiclass classification
    Ying, Li
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (01): : 111 - 120
  • [5] Wavelet extreme learning machine and deep learning for data classification
    Yahia, Siwar
    Said, Salwa
    Zaied, Mourad
    NEUROCOMPUTING, 2022, 470 : 280 - 289
  • [6] Extreme learning machine based transfer learning for data classification
    Li, Xiaodong
    Mao, Weijie
    Jiang, Wei
    NEUROCOMPUTING, 2016, 174 : 203 - 210
  • [7] Swift Imbalance Data Classification using SMOTE and Extreme Learning Machine
    Rustogi, Rishabh
    Prasad, Ayush
    2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019), 2019,
  • [8] Unsupervised Feature Learning Classification Using An Extreme Learning Machine
    Lam, Dao
    Wunsch, Donald
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [9] Robust Incremental Extreme Learning Machine
    Shao, Zhifei
    Er, Meng Joo
    Wang, Ning
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 607 - 612
  • [10] Incremental constructive extreme learning machine
    Li, Fan-Jun
    Qiao, Jun-Fei
    Han, Hong-Gui
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2014, 31 (05): : 638 - 643