PERFECT ERROR-CORRECTING DATABASES

被引:9
|
作者
FUREDI, Z
机构
[1] Mathematical Institute, the Hungarian Academy of Sciences, 1364 Budapest
关键词
D O I
10.1016/0166-218X(90)90114-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n×m matrix is called a t-error-correcting database if after deleting any t columns one can still distinguish the rows. It is perfect if after omitting any t+1 columns two identical rows are obtained. (Stating with another terminology, the system of minimal keys induced by A is the system of all (n-t)-element subsets of an n-element set.). Let ft(n) denote the minimum number of rows in a perfect t-error-correcting database of length n. We show that f2(n)=Θ(n2), and in general Ω(n(2t+1){plus 45 degree rule}3)≤ft(n)≤O(nt) for t≥3, whenever n→∞. © 1990.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [42] ERROR-CORRECTING DATA STRUCTURES
    Chen, Victor
    Grigorescu, Elena
    de Wolf, Ronald
    SIAM JOURNAL ON COMPUTING, 2013, 42 (01) : 84 - 111
  • [43] Error-Correcting Codes for Multipermutations
    Buzaglo, Sarit
    Yaakobi, Eitan
    Etzion, Tuvi
    Bruck, Jehoshua
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 724 - +
  • [44] On the design of error-correcting ciphers
    Mathur, Chetan Nanjunda
    Narayan, Karthik
    Subbalakshmi, K. P.
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2006, 2006 (1)
  • [45] On the trustworthiness of error-correcting codes
    Faldum, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) : 4777 - 4784
  • [46] The Beauty of Error-Correcting Codes
    Spielman, Daniel A.
    COMMUNICATIONS OF THE ACM, 2009, 52 (03) : 86 - 86
  • [47] Error-correcting codes and cryptography
    Imai, Hideki
    Hagiwara, Manabu
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (03) : 213 - 228
  • [48] Pseudorandom Error-Correcting Codes
    Christ, Miranda
    Gunn, Sam
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT VI, 2024, 14925 : 325 - 347
  • [49] Quantum error-correcting code for burst error
    Kawabata, S
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 231 - 234
  • [50] Error-correcting codes in complexity theory
    Trevisan, L
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2003, 2653 : 4 - 4