PERFECT ERROR-CORRECTING DATABASES

被引:9
|
作者
FUREDI, Z
机构
[1] Mathematical Institute, the Hungarian Academy of Sciences, 1364 Budapest
关键词
D O I
10.1016/0166-218X(90)90114-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n×m matrix is called a t-error-correcting database if after deleting any t columns one can still distinguish the rows. It is perfect if after omitting any t+1 columns two identical rows are obtained. (Stating with another terminology, the system of minimal keys induced by A is the system of all (n-t)-element subsets of an n-element set.). Let ft(n) denote the minimum number of rows in a perfect t-error-correcting database of length n. We show that f2(n)=Θ(n2), and in general Ω(n(2t+1){plus 45 degree rule}3)≤ft(n)≤O(nt) for t≥3, whenever n→∞. © 1990.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [1] Error-correcting keys in relational databases
    Demetrovics, J
    Katona, GOH
    Miklós, D
    FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS, 2000, 1762 : 88 - 93
  • [2] On perfect 1-ε-error-correcting codes
    Heden, Olof
    Guzeltepe, Murat
    MATHEMATICAL COMMUNICATIONS, 2015, 20 (01) : 23 - 35
  • [3] PERFECT MULTIPLE ERROR-CORRECTING ARITHMETIC CODES
    GORDON, DM
    MATHEMATICS OF COMPUTATION, 1987, 49 (180) : 621 - 633
  • [4] Perfect single error-correcting codes in the Johnson scheme
    Gordon, Daniel M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4670 - 4672
  • [5] Perfect, minimally adaptive, error-correcting searching strategies
    Cicalese, F
    Mundici, D
    Vaccaro, U
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 377 - 377
  • [6] NOTE ON PERFECT DOUBLE ERROR-CORRECTING CODES ON Q SYMBOLS
    COHEN, EL
    INFORMATION AND CONTROL, 1964, 7 (03): : 381 - &
  • [7] Entanglement increases the error-correcting ability of quantum error-correcting codes
    Lai, Ching-Yi
    Brun, Todd A.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [8] ERROR-CORRECTING CODES
    PETERSON, WW
    SCIENTIFIC AMERICAN, 1962, 206 (02) : 96 - &
  • [9] ERROR-CORRECTING CODES
    LACHAUD, G
    VLADUT, S
    RECHERCHE, 1995, 26 (278): : 778 - 782
  • [10] Error-Correcting Factorization
    Martin, Miguel Angel Bautista
    Pujol, Oriol
    De la Torre, Fernando
    Escalera, Sergio
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (10) : 2388 - 2401