The Skew Generalized Secant Hyperbolic Family

被引:0
|
作者
Fischer, Matthias [1 ]
机构
[1] Dept Stat & Econometr, Erlangen, Germany
关键词
Hyperbolic Secant Distribution; Skewness; Esscher Transformation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a skewness parameter into Vaughan's (2002) generalized secant hyperbolic (GSH) distribution by means of exponential tilting and develop some properties of the new distribution family. In particular, the moment-generating function is derived which ensures the existence of all moments. Finally, the flexibility of our distribution is compared to similar parametric models by means of moment-ratio plots and application to foreign exchange rate data.
引用
收藏
页码:437 / 443
页数:7
相关论文
共 50 条
  • [21] A NOTE ON THE HYPERBOLIC-SECANT DISTRIBUTION
    MANOUKIAN, EB
    NADEAU, P
    AMERICAN STATISTICIAN, 1988, 42 (01): : 77 - 79
  • [23] The Beta-Hyperbolic Secant Distribution
    Fischer, Matthias J.
    Vaughan, David
    AUSTRIAN JOURNAL OF STATISTICS, 2010, 39 (03) : 245 - 258
  • [24] REALIZATION OF A HYPERBOLIC SECANT MEMORY FUNCTION
    TANKESHWAR, K
    PATHAK, KN
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (29) : 5729 - 5732
  • [25] Time delay estimation method based on generalized logarithmic hyperbolic secant function in impulsive noise
    Yuzi Dou
    Omer M. Abdelrhman
    Sen Li
    EURASIP Journal on Advances in Signal Processing, 2022
  • [26] Quasiconformality and hyperbolic skew
    Ackermann, Colleen
    Fletcher, Alastair
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2021, 171 (03) : 449 - 466
  • [27] On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families
    Giorgi, Emanuele
    McNeil, Alexander J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 100 : 205 - 220
  • [28] Generalized edge-pairings for the family of hyperbolic tessellations
    Vieira, Vandenberg Lopes
    Faria, Mercio Botelho
    Palazzo, Reginaldo, Jr.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 29 - 43
  • [29] HYPERBOLIC SECANT MODEL FOR OPTICAL AND RADIATIVE COLLISIONS
    ROBINSON, EJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 26 - 26
  • [30] Hyperbolic secant varieties of M-curves
    Kummer, Mario
    Sinn, Rainer
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (787): : 125 - 162