ONE-DIMENSIONAL DENSITY-POTENTIAL RELATION FOR INDEPENDENT FERMIONS IN A LOCAL DENSITY APPROXIMATION

被引:8
|
作者
MARCH, NH
机构
来源
JOURNAL OF CHEMICAL PHYSICS | 1977年 / 67卷 / 12期
关键词
D O I
10.1063/1.434772
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:5970 / 5970
页数:1
相关论文
共 50 条
  • [41] ONE-DIMENSIONAL CHARGE-DENSITY WAVE IN A RANDOM GAUSSIAN POTENTIAL
    YEFETOV, KB
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 75 (05): : 1885 - 1891
  • [42] Local density of states of one-dimensional Mott insulators and charge-density wave states with a boundary
    Schuricht, Dirk
    Essler, Fabian H. L.
    Jaefari, Akbar
    Fradkin, Eduardo
    PHYSICAL REVIEW LETTERS, 2008, 101 (08)
  • [43] A RELATION BETWEEN PECULIAR VELOCITY AND DENSITY PARAMETER IN THE ONE-DIMENSIONAL INHOMOGENEOUS UNIVERSE
    SHINOHE, H
    FUTAMASE, T
    PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (03): : 350 - 352
  • [44] Axisymmetric and triaxial mond density-potential pairs
    Ciotti, L
    Londrillo, P
    Nipoti, C
    ASTROPHYSICAL JOURNAL, 2006, 640 (02): : 741 - 750
  • [45] Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results
    Marchukov, Oleksandr V.
    Eriksen, Emil H.
    Midtgaard, Jonatan M.
    Kalaee, Alex A. S.
    Fedorov, Dmitri V.
    Jensen, Aksel S.
    Zinner, Nikolaj T.
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (02):
  • [46] Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results
    Oleksandr V. Marchukov
    Emil H. Eriksen
    Jonatan M. Midtgaard
    Alex A.S. Kalaee
    Dmitri V. Fedorov
    Aksel S. Jensen
    Nikolaj T. Zinner
    The European Physical Journal D, 2016, 70
  • [47] Variable-height scanning tunneling spectroscopy for local density of states recovery based on the one-dimensional WKB approximation
    Naydenov, B.
    Boland, John J.
    PHYSICAL REVIEW B, 2010, 82 (24):
  • [48] One-dimensional fermions with incommensuration
    Sen, D
    Lal, S
    PHYSICAL REVIEW B, 2000, 61 (13) : 9001 - 9013
  • [49] The Approximation Property of a One-Dimensional, Time Independent Schrodinger Equation with a Hyperbolic Potential Well
    Choi, Ginkyu
    Jung, Soon-Mo
    MATHEMATICS, 2020, 8 (08)
  • [50] Local density of states for different cancer cells in a one-dimensional photonic biosensor
    Segovia-Chaves, Francis
    Baron, Erik Navarro
    Vinck-Posada, Herbert
    MATERIALS RESEARCH EXPRESS, 2025, 12 (02)