REPRESENTATIONS OF THE QUANTUM MATRIX ALGEBRA M(Q,P)(2)

被引:5
|
作者
KARIMIPOUR, V [1 ]
机构
[1] INST STUDIES THEORET PHYS & MATH,TEHRAN,IRAN
来源
关键词
D O I
10.1088/0305-4470/26/22/027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the finite dimensional irreducible representations of the quantum matrix algebra M(q,p)(2) (the coordinate ring of GL(q,p)(2)) exist only when both q and p are roots of unity. In this case the space of states has either the topology of a torus or a cylinder, which may be thought of as generalizations of cyclic representations.
引用
收藏
页码:6277 / 6284
页数:8
相关论文
共 50 条
  • [41] Representations of the q-deformed algebra Uq(iso2)
    Havlícek, M
    Klimyk, A
    Posta, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (25): : 4681 - 4690
  • [42] CONSTRUCTION OF CYCLIC REPRESENTATIONS OF QUANTUM ALGEBRAS AT Q(P)=1 FROM THEIR REGULAR REPRESENTATIONS
    FU, HC
    GE, ML
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (04) : 277 - 286
  • [43] A combinatorial description of the quantum desarmenien matrix via the q-Schur algebra
    Janzen, David
    Phillips, Stephanie
    Stokke, Anna
    JOURNAL OF ALGEBRA, 2006, 304 (02) : 906 - 926
  • [44] UNITARY REPRESENTATIONS OF THE Q-OSCILLATOR ALGEBRA
    CHAICHIAN, M
    GROSSE, H
    PRESNAJDER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06): : 2045 - 2051
  • [46] REPRESENTATIONS OF A Q-DEFORMED HEISENBERG ALGEBRA
    HEBECKER, A
    SCHRECKENBERG, S
    SCHWENK, J
    WEICH, W
    WESS, J
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (02): : 355 - 359
  • [47] QUANTUM ALGEBRA εq (2) AND 2D q-BESSEL FUNCTIONS
    Riyasat, Mumtaz
    Khan, Subuhi
    Nahid, Tabinda
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (02) : 191 - 206
  • [48] THE 2x2 quantum matrix Weyl algebra
    Dumas, F
    Jordan, DA
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (04) : 1409 - 1434
  • [49] POSSIBLE DERIVATION OF SOME SO(P,Q) GROUP REPRESENTATIONS BY MEANS OF A CANONICAL REALIZATION OF SO(P,Q) LIE ALGEBRA
    RICHARD, JL
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1968, 8 (03): : 301 - &
  • [50] INDECOMPOSABLE REPRESENTATIONS OF THE QUANTUM GROUP SU(2)Q
    SUN, CP
    LU, JF
    GE, ML
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 15 (01) : 123 - 128