COVERING VERTICES OF A GRAPH BY VERTEX-DISJOINT PATHS

被引:13
|
作者
NOORVASH, S [1 ]
机构
[1] UNIV ARIZONA,TUCSON,AZ 85721
关键词
D O I
10.2140/pjm.1975.58.159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [32] Large vertex-disjoint cycles in a bipartite graph
    Wang, H
    GRAPHS AND COMBINATORICS, 2000, 16 (03) : 359 - 366
  • [33] Construction of vertex-disjoint paths in alternating group networks
    Shuming Zhou
    Wenjun Xiao
    Behrooz Parhami
    The Journal of Supercomputing, 2010, 54 : 206 - 228
  • [34] Construction of vertex-disjoint paths in alternating group networks
    Zhou, Shuming
    Xiao, Wenjun
    Parhami, Behrooz
    JOURNAL OF SUPERCOMPUTING, 2010, 54 (02): : 206 - 228
  • [35] Covering vertices of a graph by k disjoint cycles
    Egawa, Y
    Hagita, M
    Kawarabayashi, K
    Wang, H
    DISCRETE MATHEMATICS, 2003, 270 (1-3) : 115 - 125
  • [36] Computing Vertex-Disjoint Paths in Large Graphs Using MAOs
    Preisser, Johanna E.
    Schmidt, Jens M.
    ALGORITHMICA, 2020, 82 (01) : 146 - 162
  • [37] On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths
    Júlio Araújo
    Victor A. Campos
    Ana Karolinna Maia
    Ignasi Sau
    Ana Silva
    Algorithmica, 2020, 82 : 1616 - 1639
  • [38] Degree sum conditions and vertex-disjoint cycles in graph
    Fujita, Shinya
    Matsumura, Hajime
    Tsugaki, Masao
    Yamashita, Tomoki
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 237 - 251
  • [39] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [40] F-factor and vertex-disjoint F in a graph
    Kawarabayashi, K
    ARS COMBINATORIA, 2002, 62 : 183 - 187