THE CHROMATIC UNIQUENESS OF A FAMILY OF 6-BRIDGE GRAPHS

被引:0
|
作者
Khalaf, A. M. [1 ,2 ]
Peng, Y. H. [1 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Math, Serdang 43400, Malaysia
[2] Univ Kufa, Coll Math & Comp Sci, Dept Math, Najaf, Iraq
关键词
Chromatic polynomials; chromaticity; 6-bridge graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(G, gimel) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G similar to H, if P(G, gimel) = P(H, gimel). A graph G is chromatically unique, written x-unique, if for any graph H, G similar to H implies that G is isomorphic with H. In this paper we prove the chromatic uniqueness of a new family of 6-bridge graphs.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 50 条
  • [41] Chromatic Uniqueness of A Family of K4-Homeomorphs
    Roslan, H.
    Catada-Ghimire, S.
    ARS COMBINATORIA, 2012, 107 : 419 - 430
  • [42] Chromatic uniqueness of a family of K4-homeomorphs
    Peng, Yan-ling
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6132 - 6140
  • [43] Chromatic Uniqueness of a Family of K4-Homeomorphs
    殷志祥
    Northeastern Mathematical Journal, 2001, (02) : 138 - 142
  • [44] On Chromatic Uniqueness of a Family of K4-Homeomorphs
    Catada-Ghimire, S.
    Roslan, H.
    Peng, Y. H.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (03) : 327 - 333
  • [45] On Bridge Graphs with Local Antimagic Chromatic Number 3
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Zhang, Ruixue
    MATHEMATICS, 2025, 13 (01)
  • [46] ON 6-CHROMATIC TOROIDAL GRAPHS
    ALBERTSON, MO
    HUTCHINSON, JP
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1980, 41 (NOV) : 533 - 556
  • [47] Chromatic Uniqueness of Complete Bipartite Graphs with Certain Edges Deleted II
    Hasni, R.
    Peng, Y. H.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2011, 43 : 1 - 8
  • [48] Chromatic uniqueness of elements of height ≤ 3 in lattices of complete multipartite graphs
    V. A. Baranskii
    T. A. Sen’chonok
    Proceedings of the Steklov Institute of Mathematics, 2012, 279 : 1 - 16
  • [49] Chromatic uniqueness of elements of height <= 3 in lattices of complete multipartite graphs
    Baranskii, V. A.
    Sen'chonok, T. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 3 - 18
  • [50] On the chromatic uniqueness of edge-gluing of complete bipartite graphs and cycles
    Chia, GL
    Ho, CK
    ARS COMBINATORIA, 2001, 60 : 193 - 199