Neuromorphometry of primary brain tumors by magnetic resonance imaging

被引:3
|
作者
Hevia-Montiel, Nidiyare [1 ]
Rodriguez-Perez, Pedro I. [2 ]
Lamothe-Molina, Paul J. [3 ]
Arellano-Reynoso, Alfonso [3 ,4 ]
Bribiesca, Ernesto [5 ]
Alegria-Loyola, Marco A. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Dept Comp Sci, Ave Colon 503-F X Ave Reforma & 62 Ctr, Merida 97000, Yucatan, Mexico
[2] Univ Nacl Autonoma Mexico, Comp Sci & Engineery, Mexico City 04510, DF, Mexico
[3] Ctr Med ABC, Ctr Neurol, Mexico City 05300, DF, Mexico
[4] Inst Nacl Neurol & Neurocirugia Manuel Velasco Su, Mexico City 14269, DF, Mexico
[5] Univ Nacl Autonoma Mexico, Inst Investi Matemat Aplicadas & Sistemas, Dept Comp Sci, Mexico City 04510, DF, Mexico
关键词
neuromorphometry; discrete compactness; magnetic resonance imaging; gliobastoma multiforme; brain tumors;
D O I
10.1117/1.JMI.2.2.024503
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973 +/- 14, whereas oligodendrogliomas exhibit a mean of 942 +/- 21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919 +/- 43, and the necrotic region presented a mean of 869 +/- 66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Ferda, Jiri
    Kastner, Jan
    Mukensnabl, Petr
    Choc, Milan
    Horemuzova, Jana
    Ferdova, Eva
    Kreuzberg, Boris
    EUROPEAN JOURNAL OF RADIOLOGY, 2010, 74 (03) : 428 - 436
  • [32] MAGNETIC-RESONANCE-IMAGING OF PEDIATRIC BRAIN-TUMORS
    FITZ, C
    TOPICS IN MAGNETIC RESONANCE IMAGING, 1993, 5 (03) : 174 - 189
  • [33] Diffusion tensor magnetic resonance imaging of glial brain tumors
    Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen, Czech Republic
    不详
    不详
    Eur. J. Radiol., 3 (428-436):
  • [34] Diagnosis and monitoring of the intraparenchymal brain tumors by magnetic resonance imaging
    Housni, A.
    Boujraf, S.
    Maaroufi, M.
    Benzagmout, M.
    Ezzaher, K.
    Tizniti, S.
    MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE, 2014, 38 (06): : 469 - 477
  • [35] IMAGING OF IRRADIATED BRAIN-TUMORS - VALUE OF MAGNETIC-RESONANCE-IMAGING
    CASTEL, JC
    CAILLE, JM
    JOURNAL OF NEURORADIOLOGY, 1989, 16 (02) : 81 - 132
  • [36] Association of functional magnetic resonance imaging indices with postoperative language outcomes in patients with primary brain tumors
    Kundu, Bornali
    Penwarden, Amy
    Wood, Joel M.
    Gallagher, Thomas A.
    Andreoli, Matthew J.
    Voss, Jed
    Meier, Timothy
    Nair, Veena A.
    Kuo, John S.
    Field, Aaron S.
    Moritz, Chad
    Meyerand, M. Elizabeth
    Prabhakaran, Vivek
    NEUROSURGICAL FOCUS, 2013, 34 (04)
  • [37] Algorithm for Morphological Analysis of Brain Magnetic Resonance Imaging Images in the Task of Differential Diagnosis of Primary Tumors
    Alisa Aleksandrovna Natalya Yurievna Ilyasova
    Nikita Sergeevich Selezneva
    Aleksandr Victorovich Demin
    Evgeniy Nicolaevich Kapishnikov
    Mohamed Surovcev
    undefined Soilihi
    Pattern Recognition and Image Analysis, 2024, 34 (4) : 990 - 994
  • [38] Quantitative Neuromorphometry Using Magnetic Resonance Histology
    Johnson, G. Allan
    Badea, Alexandra
    Jiang, Yi
    TOXICOLOGIC PATHOLOGY, 2011, 39 (01) : 85 - 91
  • [39] Magnetic Resonance Imaging-Based Neuromorphometry in Single Patients - A Proposal for its Usefulness
    Haenggi, Juergen
    ZEITSCHRIFT FUR NEUROPSYCHOLOGIE, 2012, 23 (02) : 81 - 96
  • [40] A system for computing neuromorphometry from magnetic resonance Images
    Greenshields, IR
    DiMario, F
    COMPUTERS IN BIOLOGY AND MEDICINE, 1999, 29 (03) : 157 - 173