BOUNDING THE NUMBER OF EMBEDDINGS OF 5-CONNECTED PROJECTIVE-PLANAR GRAPHS

被引:0
|
作者
KITAKUBO, S
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be projective-planar if it is nonplanar and is embeddable in a projective plane. In this paper we show that the numbers of projective-planar embeddings (up to equivalence) of all 5-connected graphs have an upper bound c(less-than-or-equal-to 120).
引用
收藏
页码:197 / 205
页数:9
相关论文
共 50 条
  • [41] Triangle-free projective-planar graphs with diameter two: Domination and characterization
    Chakraborty, Dibyayan
    Das, Sandip
    Mukherjee, Srijit
    Sahoo, Uma Kant
    Sen, Sagnik
    DISCRETE APPLIED MATHEMATICS, 2023, 331 : 11 - 24
  • [42] A new lower bound on the number of trivially noncontractible edges in contraction critical 5-connected graphs
    Li, Tingting
    Su, Jianji
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2870 - 2876
  • [43] On convex embeddings of planar 3-connected graphs
    Kelmans, A
    JOURNAL OF GRAPH THEORY, 2000, 33 (02) : 120 - 124
  • [44] Connected domatic number in planar graphs
    Hartnell, BL
    Rall, DF
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (01) : 173 - 179
  • [45] Connected Domatic Number in Planar Graphs
    Bert L. Hartnell
    Douglas F. Rall
    Czechoslovak Mathematical Journal, 2001, 51 : 173 - 179
  • [46] 5-Shredders of Contraction-Critical 5-Connected Graphs
    Qin, Chengfu
    Yang, Weihua
    PARALLEL PROCESSING LETTERS, 2020, 30 (03)
  • [47] The 2-extendability of 5-connected graphs on the Klein bottle
    Negami, Seiya
    Suzuki, Yusuke
    DISCRETE MATHEMATICS, 2010, 310 (19) : 2510 - 2518
  • [48] The Average Degree of Minimally Contraction-Critically 5-Connected Graphs
    Ando, Kiyoshi
    Egawa, Yoshimi
    Kriesell, Matthias
    JOURNAL OF GRAPH THEORY, 2014, 75 (04) : 331 - 354
  • [49] Some properties of contraction-critical 5-connected graphs
    Qin, Chengfu
    Yuan, Xudong
    Su, Hanji
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5742 - 5756
  • [50] Four-terminal reducibility and projective-planar wye-delta-wye-reducible graphs
    Archdeacon, Dan
    Colbourn, Charles J.
    Gitler, Isidoro
    Provan, J. Scott
    2000, Wiley-Liss Inc. (33)