SIMPLE CRITERION FOR GLOBAL REGULARITY OF VECTOR-VALUED FUNCTIONS

被引:4
|
作者
VEHOVEC, M
机构
关键词
D O I
10.1049/el:19690512
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:680 / &
相关论文
共 50 条
  • [41] TRANSITIVITY IN SPACES OF VECTOR-VALUED FUNCTIONS
    Cabello Sanchez, Felix
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 601 - 608
  • [42] Uncertainty principle for vector-valued functions
    Qu, Feifei
    Wei, Xin
    Chen, Juan
    AIMS MATHEMATICS, 2024, 9 (05): : 12494 - 12510
  • [44] VARIATIONAL INEQUALITIES FOR VECTOR-VALUED FUNCTIONS
    HILDEBRANDT, S
    WIDMAN, KO
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 309 : 191 - 220
  • [45] Kernels for Vector-Valued Functions: A Review
    Alvarez, Mauricio A.
    Rosasco, Lorenzo
    Lawrence, Neil D.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03): : 195 - 266
  • [46] Vector-valued holomorphic functions revisited
    Wolfgang Arendt
    Nicolai Nikolski
    Mathematische Zeitschrift, 2006, 252 : 687 - 689
  • [47] TSCHEBYSCHEFF SUBSPACES OF VECTOR-VALUED FUNCTIONS
    MOROZOV, EN
    MATHEMATICAL NOTES, 1976, 19 (3-4) : 209 - 212
  • [48] DIFFERENTIABILITY PROPERTIES OF VECTOR-VALUED FUNCTIONS
    KALTON, NJ
    LECTURE NOTES IN MATHEMATICS, 1986, 1221 : 141 - 181
  • [49] Vector-valued holomorphic functions revisited
    W. Arendt
    N. Nikolski
    Mathematische Zeitschrift, 2000, 234 : 777 - 805
  • [50] The Arens Algebras of Vector-Valued Functions
    Ganiev, I. G.
    Egamberdiev, O. I.
    JOURNAL OF FUNCTION SPACES, 2014, 2014