The maximum principle of the Navier-Stokes equations

被引:0
|
作者
Sh, Akysh A. [1 ]
机构
[1] Inst Math MES RK, Alma Ata, Kazakhstan
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:4 / 16
页数:13
相关论文
共 50 条
  • [31] Lectures on Navier-Stokes Equations
    Kunzinger, M.
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 763 - 764
  • [32] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [33] Computation for the Navier-Stokes Equations
    Li Kaitai Huang AixiangInstitute for Computational and Applied MathematicsXi'an Jiaotong University
    Xi'an
    CHINA
    工程数学学报, 1990, (02) : 42 - 57
  • [34] Extensions to the Navier-Stokes equations
    Wang, Shisheng
    PHYSICS OF FLUIDS, 2022, 34 (05)
  • [35] Stabilization of Navier-Stokes Equations
    Barbu, Viorel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 107 - 116
  • [36] On the control of Navier-Stokes equations
    Lions, JL
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 543 - +
  • [37] On modifications of the Navier-Stokes equations
    Kobelkov, Georgij M.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2015, 30 (02) : 87 - 93
  • [38] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [39] On properties of the Navier-Stokes equations
    Zedan, HA
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) : 287 - 304
  • [40] On the Navier-stokes equations for water
    Institute of Fundamental Technological Research, Polish Academy of Sciences, Świȩtokrzyska 21, 00-049 Warszawa, Poland
    Arch. Acoust., 2006, 2 (265-271):