Nonparametric Regression Estimation for Multivariate Null Recurrent Processes

被引:2
|
作者
Cai, Biqing [1 ]
Tjostheim, Dag [1 ]
机构
[1] Univ Bergen, Dept Math, N-5020 Bergen, Norway
关键词
beta-null recurrent; cointegration; conditional heteroscedasticity; Markov chain; nonparametric regression;
D O I
10.3390/econometrics3020265
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper discusses nonparametric kernel regression with the regressor being a d-dimensional beta-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate root n(T)h(d), where n(T) is the number of regenerations for a beta-null recurrent process and the limiting distribution (with proper normalization) is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.
引用
收藏
页码:265 / 288
页数:24
相关论文
共 50 条
  • [31] Nonparametric density and regression estimation
    DiNardo, J
    Tobias, JL
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 11 - 28
  • [32] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTIONS
    BENEDETTI, JK
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (02): : 248 - 253
  • [33] Estimation of nonparametric regression function
    Lungu, Ion
    Manole, Sorin
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2007, 41 (1-2): : 121 - 130
  • [34] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTION
    SABRY, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (05): : 285 - 288
  • [35] Nonparametric estimation for quadratic regression
    Chatterjee, Samprit
    Olkin, Ingram
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) : 1156 - 1163
  • [36] A nonparametric control chart for multivariate processes
    Paternina, CD
    Lerin, E
    Das, TK
    6TH INDUSTRIAL ENGINEERING RESEARCH CONFERENCE PROCEEDINGS: (IERC), 1997, : 420 - 425
  • [37] Estimation of multivariate regression
    Ibragimov, IA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2003, 48 (02) : 256 - 272
  • [38] Component selection and smoothing in multivariate nonparametric regression
    Lin, Yi
    Zhang, Hao Helen
    ANNALS OF STATISTICS, 2006, 34 (05): : 2272 - 2297
  • [40] Halton and Hammersley sequences in multivariate nonparametric regression
    Rafajlowicz, E
    Schwabe, R
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (08) : 803 - 812