STUDY OF THE P1 APPROXIMATION IN AN INVERSE SCATTERING PROBLEM

被引:11
|
作者
KAMIUTO, K
SEKI, J
机构
关键词
D O I
10.1016/S0022-4073(87)90116-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:455 / 459
页数:5
相关论文
共 50 条
  • [31] INVERSE PROBLEM OF SLOW ATOM SCATTERING IN QUASI-CLASSICAL APPROXIMATION
    KHUDYAKOV, SV
    ZHURNAL TEKHNICHESKOI FIZIKI, 1977, 47 (03): : 657 - 659
  • [32] INVERSE SCATTERING IN THE 1ST BORN APPROXIMATION
    CARTER, WH
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 413 : 65 - 73
  • [33] CALCULUS OF CONSTRAINT VECTORS IN P1 AND P2 APPROXIMATION
    DUVAUT, G
    PISTRE, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1982, 295 (10): : 827 - 830
  • [34] INVERSE SCATTERING IN THE 1ST BORN APPROXIMATION
    CARTER, WH
    OPTICAL ENGINEERING, 1984, 23 (02) : 204 - 209
  • [35] Some DG schemes for the Stokes-Darcy problem using P1/P1 element
    Zhou, Guanyu
    Kashiwabara, Takahito
    Oikawa, Issei
    Chung, Eric
    Shiue, Ming-Cheng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 36 (03) : 1101 - 1128
  • [36] 1-DIMENSIONAL P1 AND P3 SCATTERING COMPARISONS
    MENDELSO.MR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1966, 9 (01): : 136 - &
  • [37] The first-Order scattering P1 method
    Ramirez-Cabrera, M. A.
    Valades-Pelayo, P. J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 270
  • [38] Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition
    Takahito Kashiwabara
    Issei Oikawa
    Guanyu Zhou
    Numerische Mathematik, 2016, 134 : 705 - 740
  • [39] Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition
    Kashiwabara, Takahito
    Oikawa, Issei
    Zhou, Guanyu
    NUMERISCHE MATHEMATIK, 2016, 134 (04) : 705 - 740
  • [40] Stabilized Scheme for Calculating Radiation Transfer in the P1 Approximation
    Chetverushkin, B. N.
    Olkhovskaya, O. G.
    Gasilov, V. A.
    DOKLADY MATHEMATICS, 2024, : 393 - 398