THEORY OF TIME-INDEPENDENT MAXWELL EQUATIONS FOR FIELDS OF ARBITRARY DIMENSION AND ARBITRARY RANK

被引:0
|
作者
HERMANN, P
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:T372 / T373
页数:2
相关论文
共 50 条
  • [21] ON THE TIME-INDEPENDENT PERTURBATION-THEORY
    CAMPOS, D
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1995, 50 (08): : 727 - 736
  • [22] TIME-INDEPENDENT NONRELATIVISTIC COLLISION THEORY
    GERJUOY, E
    ANNALS OF PHYSICS, 1958, 5 (01) : 58 - 93
  • [23] WEYL ASYMPTOTICS FOR THE SPECTRUM OF THE MAXWELL OPERATOR IN LIPSCHITZ DOMAINS OF ARBITRARY DIMENSION
    Filonov, N.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (01) : 117 - 149
  • [24] A new formulation for the Maxwell equations written in arbitrary curvilinear coordinates
    Evel'son, R.L.
    Radiotekhnika i Elektronika, 2004, 49 (03): : 314 - 319
  • [25] Normalizing flows for lattice gauge theory in arbitrary space-time dimension
    Abbott, Ryan
    Albergo, Michael S.
    Botev, Aleksandar
    Boyda, Denis
    Cranmer, Kyle
    Hackett, Daniel C.
    Kanwar, Gurtej
    Matthews, Alexander G.D.G.
    Racanière, Sébastien
    Razavi, Ali
    Rezende, Danilo J.
    Romero-López, Fernando
    Shanahan, Phiala E.
    Urban, Julian M.
    arXiv, 2023,
  • [26] UNIQUENESS OF TIME-INDEPENDENT ELECTROMAGNETIC-FIELDS
    KARLSSON, PW
    JOURNAL OF APPLIED PHYSICS, 1974, 45 (06) : 2795 - 2795
  • [28] EFFECTIVE MAXWELL EQUATIONS IN A GEOMETRY WITH FLAT RINGS OF ARBITRARY SHAPE
    Lamacz, Agnes
    Schweizer, Ben
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1460 - 1494
  • [29] Introduction to time-independent plasticity theory
    Solid Mechanics and its Applications, 2014, 210 : 289 - 305
  • [30] Universality of fractal dimension on time-independent Hamiltonian systems
    Navarro, Juan F.
    Martinez, M. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (02) : 462 - 467