A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS

被引:0
|
作者
Han, Juncheol [1 ]
Park, Sangwon [2 ]
机构
[1] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
[2] Dong A Univ, Dept Math, Pusan 604714, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2013年 / 21卷 / 04期
关键词
primitive idempotents; additive; set of idempotents; von-Newmann regular ring;
D O I
10.11568/kjm.2013.21.4.463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity 1, I(R) not equal {0} be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, f is an element of I(R) (e not equal f), e+f is an element of I(R). In this paper, the following are shown: (1) I(R) is a finite additive set if and only if M(R) \ {0} is a complete set of primitive central idempotents, char(R) = 2 and every nonzero idempotent of R can be expressed as a sum of orthogonal primitive idempotents of R; (2) for a regular ring R such that I(R) is a finite additive set, if the multiplicative group of all units of R is abelian (resp. cyclic), then R is a commutative ring (resp. R is a finite direct product of finite fields).
引用
收藏
页码:463 / 471
页数:9
相关论文
共 50 条
  • [21] IDEMPOTENTS IN GROUP RINGS
    RUDIN, W
    SCHNEIDER, H
    DUKE MATHEMATICAL JOURNAL, 1964, 31 (04) : 585 - &
  • [22] RINGS WITH LATTICES OF IDEMPOTENTS
    Calugareanu, Grigore
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) : 1050 - 1056
  • [23] AN ADDITIVE PROBLEM IN FINITE CYCLIC RINGS
    Nguyen Minh Sang
    Pham Van Thang
    Le Anh Vinh
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 325 - 331
  • [24] A note on additive subgroups of finite rings
    Wilson, JS
    JOURNAL OF ALGEBRA, 2000, 234 (02) : 362 - 366
  • [25] IDEMPOTENTS IN GROUP RINGS
    COLEMAN, DB
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07): : 807 - &
  • [26] FINITE RINGS WITH GIVEN ADDITIVE GROUPS
    WIESENBAUER, J
    MONATSHEFTE FUR MATHEMATIK, 1974, 78 (02): : 164 - 173
  • [27] IDEMPOTENTS IN SIMPLE RINGS
    CHUANG, CL
    LEE, PH
    JOURNAL OF ALGEBRA, 1979, 56 (02) : 510 - 515
  • [28] Elementary Equivalence of Linear Groups Over Rings with a Finite Number of Central Idempotents and Over Boolean Rings
    Bragin V.A.
    Bunina E.I.
    Journal of Mathematical Sciences, 2014, 201 (4) : 438 - 445
  • [29] Group rings of finite strongly monomial groups: Central units and primitive idempotents
    Jespers, Eric
    Olteanu, Gabriela
    del Rio, Angel
    Van Gelder, Inneke
    JOURNAL OF ALGEBRA, 2013, 387 : 99 - 116
  • [30] STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS
    Huang, Juan
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1321 - 1334