COUNTING LATIN RECTANGLES

被引:10
|
作者
GESSEL, IM
机构
关键词
D O I
10.1090/S0273-0979-1987-15465-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:79 / 82
页数:4
相关论文
共 50 条
  • [31] Transversals in row-latin rectangles
    Drisko, AA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 84 (02) : 181 - 195
  • [32] On the completability of incomplete orthogonal Latin rectangles
    Appa, G.
    Euler, R.
    Kouvela, A.
    Magos, D.
    Mourtos, I.
    DISCRETE MATHEMATICS, 2016, 339 (06) : 1771 - 1794
  • [33] LATIN RECTANGLES AND CUBES IN EXPERIMENTAL DESIGN
    MARKOVA, EV
    INDUSTRIAL LABORATORY, 1968, 34 (07): : 995 - &
  • [34] Counting domino tilings of rectangles via resultants
    Strehl, V
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 597 - 626
  • [36] A Congruence Connecting Latin Rectangles and Partial Orthomorphisms
    Douglas S. Stones
    Ian M. Wanless
    Annals of Combinatorics, 2012, 16 : 349 - 365
  • [37] Cocyclic Hadamard matrices over Latin rectangles
    Alvarez, V
    Falcon, R. M.
    Frau, M. D.
    Gudiel, F.
    Guemes, B.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 79 : 75 - 96
  • [38] Enumeration of Sets of Mutually Orthogonal Latin Rectangles
    Jager, Gerold
    Markstrom, Klas
    Ohman, Lars-Daniel
    Shcherbak, Denys
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [39] A Congruence Connecting Latin Rectangles and Partial Orthomorphisms
    Stones, Douglas S.
    Wanless, Ian M.
    ANNALS OF COMBINATORICS, 2012, 16 (02) : 349 - 365
  • [40] Computing Autotopism Groups of Partial Latin Rectangles
    Stones R.J.
    Falcón R.M.
    Kotlar D.
    Marbach T.G.
    ACM Journal of Experimental Algorithmics, 2020, 25