Helping predictive analytics interpretation using regression trees and clustering perturbation

被引:0
|
作者
Parisot, Olivier [1 ]
Didry, Yoanne [1 ]
Tamisier, Thomas [1 ]
Otjacques, Benoit [1 ]
机构
[1] Publ Res Ctr, Gabriel Lippmann 41,Rue Brill, L-4422 Belvaux, Luxembourg
关键词
regression trees; clustering perturbation; predictive analytics;
D O I
10.1080/12460125.2015.994331
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Regression trees are helpful tools for decision support and predictive analytics, due to their simple structure and the ease with which they can be obtained from data. Nonetheless, when applied to non-trivial datasets, they tend to grow according to the complexity of the data, becoming difficult to interpret. This difficulty can be overcome by clustering the dataset and representing the regression tree of each cluster independently. In order to help create predictive models that are more comprehensible, we propose in this work a clustering perturbation method to reduce the size of the regression tree obtained from each cluster. A prototype has been developed and tested on several regression datasets.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 50 条
  • [41] Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics
    Lee, Carmen Kar Hang
    Leung, Eric Ka Ho
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2023, 180
  • [42] Clustering-Based Predictive Analytics to Improve Scientific Data Discovery
    Devarakonda, Ranjeet
    Kumar, Jitendra
    Prakash, Giri
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5658 - 5661
  • [43] PREDICTIVE ANALYTICS FOR ENERGY CONSUMPTION IN SMART HOMES WITH FOG AND CLOUD COMPUTING USING SUPPORT VECTOR REGRESSION
    Haboubi, Sofiene
    Ben Salem, Oussama
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2022, 14 (01): : 49 - 60
  • [44] Dealing with spatial autocorrelation when learning predictive clustering trees
    Stojanova, Daniela
    Ceci, Michelangelo
    Appice, Annalisa
    Malerba, Donato
    Dzeroski, Saso
    ECOLOGICAL INFORMATICS, 2013, 13 : 22 - 39
  • [45] Survival analysis with semi-supervised predictive clustering trees
    Roy, Bijit
    Stepis, Tomaz
    Pooled Resource Open-Access Als Clinical Trials Consortium, The
    Vens, Celine
    Dzeroski, Saso
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 141
  • [46] Predictive Subset Selection using Regression Trees and RBF Neural Networks Hybridized with the Genetic Algorithm
    Akbilgic, Oguz
    Bozdogan, Hamparsum
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 4 (04): : 467 - 486
  • [47] Redescription Mining with Multi-target Predictive Clustering Trees
    Mihelcic, Matej
    Dzeroski, Saso
    Lavrac, Nada
    Smuc, Tomislav
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, 2016, 9607 : 125 - 143
  • [48] Beam search induction and similarity constraints for predictive clustering trees
    Kocev, Dragi
    Struyf, Jan
    Dzeroski, Saso
    KNOWLEDGE DISCOVERY IN INDUCTIVE DATABASES, 2007, 4747 : 134 - +
  • [49] Exploring the predictive power of interaction terms in a sophisticated risk equalization model using regression trees
    van Veen, S. H. C. M.
    van Kleef, R. C.
    van de Ven, W. P. M. M.
    van Vliet, R. C. J. A.
    HEALTH ECONOMICS, 2018, 27 (02) : E1 - E12
  • [50] Malware clustering using suffix trees
    Oprisa, Ciprian
    Cabau, George
    Pal, Gheorghe Sebestyen
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2016, 12 (01): : 1 - 10