METRIC-AFFINE SCALE-COVARIANT GRAVITY

被引:5
|
作者
POBERII, EA
机构
[1] Department of Mathematics, A. A. Friedmann Laboratory for Theoretical Physics, St. Petersburg, 191023, SPb UEF
关键词
D O I
10.1007/BF02106668
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a gravitational theory based on the complete relaxing of Riemannian constraints (which force the connection to be symmetric and metric compatible) combined with the requirement of local conformal invariance. To reach this goal we generalize original Dirac's formalism of co-covariant calculus on spaces with arbitrary torsion and nonmetricity. The resulting gravitational theory turns out to be independent of the choice of measuring standards. Nevertheless there exists a mechanism of spontaneous gauge fixing through which all the masses in the universe could be generated. It is shown that field equations of the theory admit of a de Sitter solution with no cosmological constant, both in a vacuum case and in the presence of matter without proper hypermomentum. Various possible developments of the proposed theory are discussed in brief.
引用
收藏
页码:1011 / 1054
页数:44
相关论文
共 50 条
  • [41] Two-dimensional metric-affine gravity
    Obukhov, YN
    PHYSICAL REVIEW D, 2004, 69 (06): : 6
  • [42] Exactly solvable connections in metric-affine gravity
    Iosifidis, Damianos
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (08)
  • [43] Metric-Affine Gravity and the Geometric Nature of Matter
    Ghodratallah Fasihi-Ramandi
    Shahroud Azami
    Vahid Pirhadi
    Gravitation and Cosmology, 2022, 28 : 102 - 107
  • [44] Cosmology of the complete quadratic metric-affine gravity
    Iosifidis, Damianos
    Pallikaris, Konstantinos
    PHYSICAL REVIEW D, 2025, 111 (02)
  • [45] Rotating black holes in metric-affine gravity
    Baekler, Peter
    Hehl, Friedrich W.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (05): : 635 - 668
  • [46] BRST antifield treatment of metric-affine gravity
    Gronwald, F.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 57 (02):
  • [47] Metric-affine bumblebee gravity: classical aspects
    Delhom, Adria
    Nascimento, J. R.
    Olmo, Gonzalo J.
    Petrov, A. Yu.
    Porfirio, Paulo J.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (04):
  • [48] Quadratic metric-affine gravity: solving for the affine-connection
    Damianos Iosifidis
    The European Physical Journal C, 82
  • [49] ASTROPHYSICAL TESTS OF SCALE-COVARIANT GRAVITY THEORIES
    MANSFIELD, VN
    MALIN, S
    ASTROPHYSICAL JOURNAL, 1980, 237 (01): : 349 - 354
  • [50] Universal field equations for metric-affine theories of gravity
    Tapia, V
    Ujevic, M
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (11) : 3719 - 3729