GAUSSIAN CURVATURE ON SINGULAR SURFACES

被引:18
|
作者
CHEN, WX
LI, CM
机构
[1] SW MISSOURI STATE UNIV,DEPT MATH,SPRINGFIELD,MO 65804
[2] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
关键词
CRITICAL AND SUPERCRITICAL CASES; NONLINEAR ELLIPTIC EQUATIONS; VARIATIONAL METHODS; PRESCRIBING GAUSSIAN CURVATURE; SURFACES WITH CONICAL SINGULARITIES;
D O I
10.1007/BF02921316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider prescribing Gaussian curvature on surfaces with conical singularities in both Then we obtain sufficient conditions for a function to be the Gaussian curvature of some pointwise conformal singular metric. We only require that the values of the function are not too large at singular points of the metric with the smallest angle, say, less or equal to 0, or less than its average value. To prove the results, we apply some new ideas and techniques. One of them is to estimate the total curvature along a certain minimizing sequence by using the ''Distribution of Mass Principle'' and the behavior of the critical points at infinity.
引用
收藏
页码:315 / 334
页数:20
相关论文
共 50 条
  • [21] INFINITESIMAL BENDINGS OF SURFACES WITH A NEGATIVE GAUSSIAN CURVATURE
    HINEVA, ST
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (10): : 1413 - 1416
  • [22] Affine Translation Surfaces with Constant Gaussian Curvature
    Fu, Yu
    Hou, Zhong-Hua
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (02): : 337 - 343
  • [23] Prescribing discrete Gaussian curvature on polyhedral surfaces
    Xu, Xu
    Zheng, Chao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [24] A NOTE ON THE PROBLEM OF PRESCRIBING GAUSSIAN CURVATURE ON SURFACES
    DING, WY
    LIU, JQ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (03) : 1059 - 1066
  • [25] Hamiltonian formulation of surfaces with constant Gaussian curvature
    Trejo, Miguel
    Ben Amar, Martine
    Mueller, Martin Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (42)
  • [26] SURFACES OF LIMITED EXTERNAL AND POSITIVE GAUSSIAN CURVATURE
    BORISOV, YF
    SHEFEL, SZ
    DOKLADY AKADEMII NAUK SSSR, 1971, 200 (02): : 259 - &
  • [27] EXTREMUM PROBLEMS FOR SURFACES OF BOUNDED GAUSSIAN CURVATURE
    FET, AI
    DOKLADY AKADEMII NAUK SSSR, 1963, 153 (02): : 292 - &
  • [29] Conforming nanoparticle sheets to surfaces with Gaussian curvature
    Mitchell, Noah P.
    Carey, Remington L.
    Hannah, Jelani
    Wang, Yifan
    Ruiz, Maria Cortes
    McBride, Sean P.
    Lin, Xiao-Min
    Jaeger, Heinrich M.
    SOFT MATTER, 2018, 14 (45) : 9107 - 9117